Marine Science News

Sea Shepherd calls for Shark Net Removal in Queensland

After several sightings of protected Humpback whales migrating along the east coast over the past two weeks, NSW Department of Primary Industries Minister Niall Blair has announced the second NSW North Coast net trial will come to an end.

 

NSW is also removing shark nets from their other 51 sites for the whale migration season. Whilst NSW is removing gear to prevent whale entanglements, Queensland continues at the peril of these majestic marine mammals. Please sign these petitions to demonstrate your support for marine animals.

 

Sea Shepherd welcomes the NSW Government announcement that ended the northern NSW shark net trial which was putting these ocean giants at too great a risk. Whale tourism is an important industry in Queensland with some of the finest whale watching tours available in centres from the Gold Coast to Hervey Bay and to Cairns and Port Douglas. Locals and tourists want to see these animals swimming freely without the risk of entanglement. 

Sea Shepherd's Operation Apex Harmony team saw possibly 11 entanglements in Queensland Shark Control Program gear last year with a whale calf killed at Kurrawa in a shark net. Fellow campaigner and marine scientist, CEO of Humpbacks and Highrises, Dr Olaf Meynecke said: “Our organisation has long campaigned for the replacement of the shark nets in the Gold Coast as they are a major risk to protected marine life including whales who use the bay as a resting and calving ground each year. 

 

"NSW has removed shark nets whilst only a few kilometres across the border in the Gold Coast bay whale entanglements will continue. More than 1/3 of recorded Humpback whale incidents along the Queensland coastline are in fact due to the Queensland Shark Control Program and we urgently need to change the current practice in light of an increasing whale population. "Alternative methods are available that do not put the life of humans or whales in danger.” Sea Shepherd Australia's Managing Director Mr Hansen also stated: “Sea Shepherd is concerned for human safety. It is not a question of protecting human safety at cost to the marine environment. You can have both human safety and marine animal protection with the many non-lethal alternatives to nets and drum lines available right now.”

 

Originally published at: http://www.seashepherd.org.au/news-and-commentary/news/sea-shepherd-calls-for-shark-net-removal-in-queensland.html

 

4 May 2018

Help remove the shark nets for good in Queensland 

 

Help remove the shark nets for good in New South Wales

 

4 things you didn’t know about white sharks

Given white sharks get the (sea)lion’s share of media attention, you may be surprised to learn that we don’t know a whole lot about them. Sure, we know some pretty cool stuff already: they give birth to live young, can swim over 60km an hour and are an apex predator. But because they swim huge distances and are lone travellers it’s hard to get to know them really well. Scientists love a challenge though, so, courtesy of their tireless efforts to study these great creatures, here are four facts you probably didn’t know.

There are two main populations of white shark in the Australasian region

The two populations of white sharks rarely mix. From CSIRO
The two populations of white sharks rarely mix. From CSIRO

Tagging data and genetic evidence suggests two populations of white sharks Carchardon carcharias (commonly known as the great white shark) exist in Australia: an eastern population ranging from Tasmania to central Queensland and across to New Zealand, and a southern-western population ranging from western Victoria to north-western Western Australia.

Until now, there were no reliable estimates of white shark population sizes in Australian waters

There’s a popular saying in the marine world: ‘counting fish is like counting trees, but you can’t see them and they move around all the time.’ Sounds impossible, right? Not for our scientists: in a world first we’ve used a unique combination of electronic tagging and tracking, collection of tissue samples, and a combined genetic and statistical technique called ‘close-kin mark recapture’ to estimate the Australian white shark populations. ‘Close-kin mark recapture’ means we compared the genetic data from juvenile white sharks to figure out how many shared a mother or father. This number can reveal the overall number of breeding adults: a smaller adult population means lots of half and full brothers and sisters, and vice versa. Through the juvenile’s DNA, we’re learning a whole lot about the adult population without having to track them down.

 

The only catch – you need to know where the cool kids hang (the nursery areas for juvenile white sharks) so you can tag them and collect samples. The eastern juveniles have a few choice locations but their southern-western counterparts are keeping tight-lipped about their favourite spots, meaning we couldn’t conduct the same study with them. Despite this, we were able to estimate the southern-western adult population size to be 1460 (with a range of between 760 and 2250).

 

But what of the eastern population? We estimate the total population to be 5,460 (with a range of between 2909 and 12,802). We’re not sure if this is historically high, low or somewhere in-between because we have nothing to compare it with, but at least we now have a starting point.

White sharks take a long time to mature

White sharks take a relatively long time to reach maturity — 12 to 15 years — which means they’re slow to reproduce. These are the badges of evolutionary honour a species gets to wear for being extremely successful. However, these same traits mean that if the number of mature white sharks dropped suddenly, the entire species could be under threat. Until now, we had no idea how many juvenile sharks survive to maturity, an important piece of the population puzzle. Another incredible thing our researchers have uncovered is the mortality rate of juvenile sharks in the eastern population. Using data from around 70 juvenile sharks fitted with an acoustic emitter we estimated that juvenile sharks had an annual survival rate of around 73 per cent.

More sharks in the water doesn’t mean more shark attacks

While it’s true the overall number of shark attacks has gradually increased in the past few decades in Australia, many different factors unrelated to shark numbers contribute to the overall increase in shark attacks. These include human population trends, changes in human population distribution and regional demographics, as well as variations in lifestyle and behaviour of people over time. However, clusters of shark attacks cannot be attributed to increases in human use of the ocean, or sudden increases in overall shark population size, because neither of these change over such short periods.

 

There are, for example, high human-use areas where white sharks are abundant but the incidence of shark attack is low. The drumline program in Western Australia revealed a significant number of tiger sharks present in coastal waters off Perth, yet no attacks have been attributed to this species in the area since 1925 according to the Australian Shark Attack file. Incidence and frequency of shark attacks may not relate directly to local shark abundance and cannot be used as a proxy for shark population trend.

 

So, what does all this new information mean? Now that we have a starting point for shark populations, we’ll be repeating the process over time to build population trends – a crucial step for developing effective policy outcomes for conservation and risk management.

Original article published https://blog.csiro.au/4-things-didnt-know-white-sharks/

9 February 2018

Tiny plastics are potentially dangerous for turtles too

Scientists from James Cook University (JCU) and the Australian Institute of Marine Science (AIMS) have developed a new method to study microplastics swallowed by sea turtles.

The new technique will help assess whether microplastics are as dangerous to turtles as larger pieces of plastic.

Recent estimates suggest there are more than 5 trillion pieces of plastic debris floating in the world's oceans, a figure which doesn’t include waste on beaches or the seafloor.

JCU’s Associate Professor Ellen Ariel said contamination of marine life by microplastics – pieces of plastic smaller than 5 mm in length - is poorly known and likely to be under-reported.

 

AIMS@JCU student Alexandra Caron, led the study. “As with bigger pieces of plastic, once swallowed, ingested microplastics may impact organisms physically as well as physiologically as they can leach associated plastic chemicals or other absorbed pollutants into the animal causing toxicity,” she said.

 

A new technique allows scientists to separate out large and small plastic particles from the contents of turtle guts. Image from AIMS 2018.
A new technique allows scientists to separate out large and small plastic particles from the contents of turtle guts. Image from AIMS 2018.

Sea turtles are at particular risk from plastics in the oceans because the seven species of marine turtles are already categorised as vulnerable to critically endangered.“They look for things like jellyfish to eat, and a piece of soft floating plastic can appear very similar. Plastic debris can also become entangled among green turtle food sources such as seagrass leaves and seaweed. Turtles don’t have the capacity to regurgitate, so plastic particles tend to be swallowed and accumulate in the gut,” said Associate Professor Ariel.

Under the supervision of AIMS marine chemist Dr. Cherie Motti the new method was applied. It involves a sequence of chemical treatments designed to separate out swallowed plastic particles from plant and animal food remains as well as any sediment the turtle has swallowed during feeding.  “We examined the gut of two green turtles using this new method, and even with this small sample set, found seven microplastics consisting of two plastic paint chips and five synthetic fabric particles. That’s in addition to also finding 4.5 m of nylon line and some soft plastic pieces entangled in the gut,” said Dr Motti. 

“The new technique will increase our knowledge of the role plastic pollution plays in declining turtle health. But it has already highlighted the need for increased efforts in plastic pollution mitigation and reduction into the marine environment,” said JCU Professorial Research Fellow Dr Jon Brodie. 

17 April 2018 from www.aims.gov.au

Microfibres (left) and paint chips were found in the gut of two green turtles. From AIMS
Microfibres (left) and paint chips were found in the gut of two green turtles. From AIMS

The deepest-dwelling fish in the sea is small, pink and delicate

File 20180125 100902 h0oik.jpg?ixlib=rb 1.1
Image from video of Mariana snailfish. SOI/HADES/University of Aberdeen (Dr. Alan Jamieson) , CC BY-ND
Mackenzie Gerringer, University of Washington

Thanks to movies and nature videos, many people know that bizarre creatures live in the ocean’s deepest, darkest regions. They include viperfish with huge mouths and big teeth, and anglerfish, which have bioluminescent lures that make their own light in a dark world.

However, the world’s deepest-dwelling fish – known as a hadal snailfish – is small, pink and completely scaleless. Its skin is so transparent that you can see right through to its liver. Nonetheless, hadal snailfish are some of the most successful animals found in the ocean’s deepest places.

Our research team, which includes scientists from the United States, United Kingdom and New Zealand, found a new species of hadal snailfish in 2014 in the Mariana Trench. It has been seen living at depths of almost 27,000 feet (8,200 meters). We recently published its scientific description and officially christened it Pseudoliparis swirei. Studying its adaptations for living at such great depths has provided new insights about what kinds of life can survive in the deep ocean.

The Mariana snailfish, Pseudoliparis swirei, the deepest-living fish. Video by Alan Jamieson and Thomas Linley, University of Aberdeen. Schmidt Ocean Institute.

Exploring the hadal zone

We discovered this fish during a survey of the Mariana Trench in the western Pacific Ocean. Deep-sea trenches form at subduction zones, where one of the tectonic plates that form the Earth’s crust slides beneath another plate. They extend 20,000 to 36,000 feet deep below the ocean’s surface. The Mariana Trench is deeper than Mount Everest is tall.

Ocean waters in these trenches are known as the hadal zone. Our team set out to explore the Mariana Trench from top to bottom in an effort to understand what lives in the hadal zone; how organisms there interact; how they survive under enormous pressure created by six to seven miles of water above them; and what role hadal trenches play in the global ocean ecosystem.

Mariana Trench location. Dcfleck, CC BY

Getting to the bottom

Sending instruments to the ocean floor is pretty straightforward. Bringing them back up is not. Researchers studying the deep sea often use nets, cameras or robots connected to ships by cables. But a 7-mile-long cable, even if it is very strong, can break under its own weight.

We used free-falling landers – mechanical platforms that carry instruments and steel weights and are not connected to the ship. When we deploy landers, it takes about four hours for them to sink to the bottom. To call them back, we use an acoustic signal that causes them to release their ballast and float to the surface. Then we search for them in the water (each carries an orange flag), retrieve them and collect their data.

Deploying the fish trap in the Mariana Trench from the R/V Falkor. © Schmidt Ocean Institute. Paul Yancey, Whitman College., CC BY-ND

Life in the trenches

Hadal trenches are named after Hades, the Greek god of the underworld. To humans, they are harsh, extreme environments. Pressure is as high as 15,000 pounds per square inch – equivalent to a large elephant standing on your thumb, and 1,100 times greater than atmospheric pressure at sea level. Water temperatures are as low as 33 degrees Fahrenheit (1 degree Celsius). Yet, a host of animals thrive under these conditions.

Our team put down cameras baited with mackerel to attract mobile animals in the trench. At shallower depths, from approximately 16,000 to 21,000 feet (5,000-6,500 meters) on the abyssal plain, we saw large fish such as rattails, cusk eels and eel pouts. At the upper edges of the trench, below 21,000 feet, we found decapod shrimp, supergiant amphipods (swimming crustaceans), and small pink snailfish. This newly discovered species of snailfish that lives to near 27,000 feet (8,200 meters), is now the world’s deepest living fish.

Video footage captured from the University of Aberdeen’s Hadal-Lander in the Mariana Trench from 16,000 to 35,000 feet deep. Video by Alan Jamieson and Thomas Linley.

At the trench’s greatest depths, near 36,000 feet (11,000 meters), we saw only large swarms of small scavenging amphipods, which are somewhat similar to garden pill bugs. Amphipods live all over the ocean but are highly abundant in trenches. The Mariana snailfish that we filmed were eating these amphipods, which make up most of their diet.

The Mariana Trench houses the ocean’s deepest point, at Challenger Deep, named for the HMS Challenger expedition, which discovered the trench in 1875. Their deepest sounding, at nearly 27,000 feet (8,184 meters), was the greatest known ocean depth at that time. The site was named Swire Deep, after Herbert Swire, an officer on the voyage. We named the Mariana snailfish Pseudoliparis swirei in his honor, to acknowledge and thank crew members who have supported oceanographic research throughout history.

Life under pressure

Hadal snailfish have several adaptations to help them live under high pressure. Their bodies do not contain any air spaces, such as the swim bladders that bony fish use to ascend and descend in the water. Instead, hadal snailfish have a layer of gelatinous goo under their skins that aids buoyancy and also makes them more streamlined.

Hadal animals have also adapted to pressure on a molecular level. We’ve even found that some enzymes in the muscles of hadal fish are adapted to function better under high pressure.

Scientific drawing of Pseudoliparis swirei, the Mariana snailfish. Thomas Linley/Zootaxa, CC BY-ND

Whitman College biologist Paul Yancey, a member of our team, has found that deep-sea fish use a molecule called trimethyl-amine oxide (TMAO) to help stabilize their proteins under pressure.

However, to survive at the highest water pressures in the ocean, fish would need so much TMAO in their systems that their cells would reach higher concentrations than seawater. At that high concentration, water would tend to flow into the cells due to a process called osmosis, in which water flows from areas of high concentration to low concentration to equalize. To keep these highly concentrated cells from rupturing, fish would have to continually pump water out of their cells to survive.

The evidence suggests that fish don’t actually live all the way to the deepest ocean depths because they are not able to keep enough TMAO in their cells to combat the high pressure at that depth. This means that around 27,000 feet (8,200 meters) may be a physiological depth limit for fish.

The ConversationThere may be fish that live at levels as deep, or even slightly deeper, than the Mariana snailfish. Different species of hadal snailfish are found in trenches worldwide, including the Kermadec Trench off New Zealand, the Japan and Kurile-Kamchatka trenches in the northwestern Pacific, and the Peru-Chile Trench. As a group, hadal snailfish seem to have found an unlikely haven in a place named for the proverbial hell.

Mackenzie Gerringer, Postdoctoral Researcher, University of Washington

This article was originally published on The Conversation. Read the original article.

Why do shark bites seem to be more deadly in Australia than elsewhere?

File 20171031 18735 19idlu0.jpg
White sharks’ ability to stay warm in cold water makes them efficient long-range hunters. Denice Askebrink
Blake Chapman, The University of Queensland

The first thing to say about shark attack deaths is that they are very rare, with only about two per year in Australia. But still, every year without fail, people die from shark bites, both here and around the world.

According to official statistics, the United States records by far the most unprovoked shark bites – an average of 45 per year over the past decade. However, only 1.3% of these incidents were fatal – 0.6 deaths per year.

Australia records fewer bites than the US (an average of 14 per year), but a much greater proportion of them are deadly: (1.5 per year, or close to 11%). So what is it that (relatively speaking) makes Australia more prone to deadly shark attacks?


Read more: Not just nets: how to stop shark attacks without killing sharks


My new book Shark Attacks: Myths, Misunderstandings and Human Fear addresses this and other questions about sharks, with the aim of dispelling common myths and providing the knowledge needed for decisions made on science rather than fear and emotion.

A perfect storm

In a way, Australia has a “perfect storm” of conditions for serious shark attacks. The first reason is that Australians (and visitors to Australia) love the ocean. Some 85% of Australians live within 50km of the coast, and Australian coastal areas account for the most prominent growth outside of capital cities. Beaches are also favoured recreational destinations in Australia and coastal locations are heavily targeted in tourism, attracting nearly 60% of international tourists.

Next, the sharks themselves. Australia has the world’s highest diversity of sharks and rays, including roughly 180 of the 509 known shark species.

But neither of these factors, even taken together, is enough to explain why deaths are more prevalent in Australia. What we really need to look at is dangerous sharks.

Only 26 shark species have been definitively identified as biting humans without provocation, although the true number is likely to be somewhat higher. Of these 26 species, 22 (85%) are found in Australian waters.

All 11 of the species known to have caused fatal unprovoked bites on humans can be found in Australian waters. And crucially, Australia’s coastal waters are home to all of the “big three” deadly species: white sharks, tiger sharks, and bull sharks.

Australia’s waters are home to all three of the ‘big three’ shark species. Denice Askebrink

These species account for all but three of the fatal shark attacks worldwide from 1982-2011. All of the big three species are inquisitive, regularly frequent coastal environments, and are formidably big and strong.

They also have complex, unpredictable behaviour. But despite this difficulty, we can identify factors that make them more likely to swim in areas routinely used by humans.

Warming to it

White sharks have a physiological adaptation that allows them to maintain a vast global distribution, and hence are responsible for the northernmost and southernmost recorded shark bites on humans.

Most fish are ectothermic, or cold-blooded, with body temperatures very close to that of the surrounding water. This restricts their range to places where the water temperature is optimal.

In contrast, white sharks and a few other related species can retain the heat generated by their muscles predominantly during swimming, enabling them to be swift and agile predators even in cold water. They do this with the help of bunches of parallel arteries and veins in their brains, eyes, muscles and stomachs that function as “heat exchangers” between incoming and outgoing blood, allowing them to keep these crucial organs warm.

White sharks are so good at retaining heat that their core body temperature can be up to 14.3℃ above the surrounding water temperature. This allows them to move seasonally up and down Australia’s east and west coasts, presumably following migrating prey species.

Getting salty

Bull sharks, meanwhile, are the only sharks known to withstand wide variations in water salinity. This means they can easily move from salty oceans to brackish estuaries and even travel thousands of kilometres up river systems. As a result they can overlap with human use areas such as canals, estuaries, rivers and even some lakes. One female bull shark was observed making a 4,000km round-trip to give birth in a secluded Madagascan estuary rather than the open ocean.

As a result, most bull sharks found in river systems are juveniles, but these areas may also be home to large, pregnant females who need to eat more prey to sustain themselves. As rivers are often clouded by sediment, there is an increased risk that a human may be mistaken for prey in this low-visibility environment.

Bull sharks can roam in rivers as well as oceans. Albert Kok/Wikimedia Commons

Opportunistic tigers

Tiger sharks mainly stay in coastal waters, although they also venture into the open ocean. Their movements are unpredictable, they eat a wide range of prey, are naturally curious and opportunistic, and can be aggressive to humans.

Tiger sharks are clever too – they are thought to use “cognitive maps” to navigate between distant foraging areas, and have hunting ranges that span hundreds of thousands of square kilometres so as to maintain the element of surprise. As a result, tiger sharks’ distribution in Australian waters covers all but the country’s southern coast.

Tiger sharks like to keep their prey guessing. Albert Kok/Wikimedia Commons, CC BY-SA

Read more: Finally, a proven way to keep great white sharks at arm’s length


Taken together, it’s clear that Australia’s waters are home to three predators that can pose a real danger, even if only an accidental one, to humans.

But remember that shark attacks are incredibly rare events, and fatal ones even rarer still. There are also lots of tips we can use to minimise the risk of having a negative encounter with a shark.

The ConversationDon’t swim in murky, turbid or dimly lit water, as sharks may not be able to see you properly (and you may not be able to see them). Avoid swimming in canals, or far from the shore, or along dropoffs. Swim in designated areas and with others, and avoid swimming where baitfish (or bait) may be present. And of course, always trust your instincts.

Blake Chapman, Adjunct Research Fellow, Science Communicator, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Understanding the feeding role of tiger sharks

Researchers are discovering more about what tiger sharks eat. Image: Peter Verhoog / Dutch Shark Society
Researchers are discovering more about what tiger sharks eat. Image: Peter Verhoog / Dutch Shark Society

Tiger sharks are one of the most successful large predators in the world’s oceans, but studying what they eat has been a challenge for researchers.  Historically diet is studied through examining stomach contents, but scientists at the Australian Institute of Marine Science (AIMS) and collaborators are leading the way in understanding more about the feeding habits of sharks from their skin tissue.  This allows us to learn about shark diet based on a quick non-lethal approach.

 

In a recent study, AIMS marine biologists Dr Luciana Ferreira, Dr Michelle Thums, Dr Mark Meekan and co-authors from a number of Australian universities, revealed their findings after examining the tissue samples of 273 tiger sharks from Western Australia to New South Wales and the Great Barrier Reef. Samples of blood and muscle tissue of tiger sharks showed information on the prey, position of individual sharks in the food chain, and even what type of habitat (coastal or offshore, seabed or open water) the animal had been feeding in.

 

Dr Ferreira said tiger sharks are large mobile animals and to ensure sustainable and resilient populations, we need better data on their feeding and behaviors. “In terms of predators, if we can understand the shark’s motivations and how they are using habitats, we can also understand their function within these habitats,” she said.

Dr Luciana Ferreira takes small tissue samples from a tiger shark. Image courtesy of Ocearch.
Dr Luciana Ferreira takes small tissue samples from a tiger shark. Image courtesy of Ocearch.

Difficulties involved in the direct observation of feeding behaviour of marine megafauna such as tiger sharks, has led to the use of alternative techniques to provide insights into the process of their foraging. One of the most common of these is the analysis of stable isotopes of carbon and nitrogen in their tissues, which can provide information on diet, feeding position in the food chain and interactions among different species, and their migratory movements. “Our analysis of stable isotopes shows that the functional role of tiger sharks in food-webs varied among different marine habitats we sampled along the tropical and temperate coasts of Australia,” Dr Ferreira said.

 

“Tiger sharks in Shark Bay and Ningaloo Reef in Western Australia, and on the Great Barrier Reef had long-term diets based in seagrass and reef-associated food webs. In these habitats they are focussed on turtles and dugong as prey. “In contrast, when sharks were sampled in more temperate habitats such the waters off New South Wales and southern Queensland, the composition of their tissues reflected a diet based on more pelagic [ocean-going] food webs, and they were focused on large fish. “Tiger sharks occupied roles at the top of food webs at Shark Bay in Western Australia and on the Great Barrier Reef, but not at Ningaloo Reef or off the coast of NSW. “This means the local environment and prey community appear to be the most important determinants of the diet of tiger sharks.”  Dr Ferreira said the research confirmed the role of tiger sharks in Australian coastal ecosystems as opportunistic, flexible predators.

 

The research paper ‘The trophic role of a large marine predator, the tiger shark Galeocerdo cuvier’ is published in Nature Scientific Reports.

 

9 November 2017, Australian Institute of Marine Science, 2017

El Niño in the Pacific has an impact on dolphins over in Western Australia

Leaping bottlenose dolphins. Kate Sprogis/MUCRU, Author provided
Kate Sprogis, Murdoch University; Fredrik Christiansen, Murdoch University; Lars Bejder, Murdoch University, and Moritz Wandres, University of Western Australia

Indo-Pacific bottlenose dolphins (Tursiops aduncus) are a regular sight in the waters around Australia, including the Bunbury area in Western Australia where they attract tourists.

The dolphin population here, about 180km south of Perth, has been studied quite intensively since 2007 by the Murdoch University Cetacean Unit. We know the dolphins here have seasonal patterns of abundance, with highs in summer/autumn (the breeding season) and lows in winter/spring.

But in winter 2009, the dolphin population fell by more than half.

A leaping bottlenose dolphin. Kate Sprogis/MUCRU, Author provided

This decrease in numbers in WA could be linked to an El Niño event that originated far away in the Pacific Ocean, we suggest in a paper published today in Global Change Biology. The findings could have implications for future sudden drops in dolphin numbers here and elsewhere.


Read more: Tackling the kraken: unique dolphin strategy delivers dangerous octopus for dinner


A Pacific event

The El Niño Southern Oscillation (ENSO) results from an interaction between the atmosphere and the tropical Pacific Ocean. ENSO periodically fluctuates between three phases: La Niña, Neutral and El Niño.

During our study from 2007 to 2013, there were three La Niña events. There was one El Niño event in 2009, with the initial phase in winter being the strongest across Australia.

The blue vertical line shows the decline in dolphin numbers (d) during the 2009 El Niño event. Kate Sprogis, Author provided

Coupled with El Niño, there was a weakening of the Leeuwin Current, the dominant ocean current off WA. There was also a decrease in sea surface temperature and above average rainfall.

ENSO is known to affect the strength of the south-ward flowing Leeuwin Current.

During La Niña, easterly trade winds pile warm water on the western side of the Pacific Ocean. This westerly flow of warm water across the top of Australia through the Indonesian Throughflow results in a stronger Leeuwin Current.

During El Niño, trade winds weaken or reverse and the pool of warm water in the Pacific Ocean gathers on the eastern side of the Pacific Ocean. This results in a weaker Indonesian Throughflow across the top of Australia and a weakening in strength of the Leeuwin Current.

A chart showing sea surface temperature (SST) anomalies off Western Australia. Note the extremes for the moderate El Niño in 2009 (blue rectangle), and the strong La Niña in 2011 (red rectangle) Moritz Wandres, Author provided

The strength and variability of the Leeuwin Current coupled with ENSO affects species biology and ecology in WA waters. This includes the distribution of fish species, the transport of rock lobster larvae, the seasonal migration of whale sharks and even seabird breeding success.

The question we asked then was whether ENSO could affect dolphin abundance?

What happened during the El Niño?

These El Niño associated conditions may have affected the distribution of dolphin prey, resulting in the movement of dolphins out of the study area in search of adequate prey elsewhere.

A surfacing bottlenose dolphin. Kate Sprogis/MUCRU, Author provided

This is similar to what happens for seabirds in WA. During an El Niño event with a weakened Leeuwin Current, the distribution of prey changes around seabird’s breeding colonies resulting in a lower abundance of important prey species, such as salmon.

This in turn negatively impacts seabirds, including a decrease in reproductive output and changes in foraging.

In southwestern Australia, the amount of rainfall is strongly connected to sea surface temperature. When the water temperature in the Indian Ocean decreases, the region receives higher rainfall during winter.

High levels of rainfall contribute to terrestrial runoff and alters freshwater inputs into rivers and estuaries. The changes in salinity influences the distribution and abundance of dolphin prey.

This is particularly the case for the river, estuary, inlet and bay around Bunbury. Rapid changes in salinity during the onset of El Niño may have affected the abundance and distribution of fish species.

In 2009, there was also a peak in strandings of dead bottlenose dolphins in WA (between 1981-2010), but the cause of this remains unknown.

Of these strandings, in southwest Australia, there was a peak in June that coincided with the onset of the 2009 El Niño.

Specifically, in the Swan River, Perth, there were several dolphin deaths, with some resident dolphins that developed fatal skin lesions that were enhanced by the low-salinity waters.

What does all this mean?

Our study is the first to describe the effects of climate variability on a coastal, resident dolphin population.

A group of bottlenose dolphins. Kate Sprogis/MUCRU, Author provided

We suggest that the decline in dolphin abundance during the El Niño event was temporary. The dolphins may have moved out of the study area due to changes in prey availability and/or potentially unfavourable water quality conditions in certain areas (such as the river and estuary).


Read more: Explainer: El Niño and La Niña


Long-term, time-series datasets are required to detect these biological responses to anomalous climate conditions. But few long-term datasets with data collected year-round for cetaceans (whales, dolphins and porpoises) are available because of logistical difficulties and financial costs.

Continued long-term monitoring of dolphin populations is important as climate models provide evidence for the doubling in frequency of extreme El Niño events (from one event every 20 years to one event every ten years) due to global warming.

The ConversationWith a projected global increase in frequency and intensity of extreme weather events (such as floods, cyclones), coastal dolphins may not only have to contend with increasing coastal human-related activities (vessel disturbance, entanglement in fishing gear, and coastal development), but also have to adapt to large-scale climatic changes.

Kate Sprogis, Research associate, Murdoch University; Fredrik Christiansen, Postdoctoral Research Fellow, Murdoch University; Lars Bejder, Professor, Cetacean Research Unit, Murdoch University, Murdoch University, and Moritz Wandres, Oceanographer PhD Student, University of Western Australia

This article was originally published on The Conversation. Read the original article.

9 October 2017

Study uncovers value of shark dive tourism

Shark diving tourism is a growing industry estimated to be worth more than $25.5 million annually to Australia’s regional economy.

 

A new report has documented the value on marine wildlife tourism, underlining a need for adequate management of shark species to ensure a sustainable dive tourism industry.

 

A collaboration between the Australian Institute of Marine Science (AIMS), Flinders University, University of Western Australia, and Southern Cross University documented the industry of four major shark viewing industries across the Australian coast.

AIMS marine biologist and co-author of the study Dr Mark Meekan said the research aimed to provide an estimate of the economic value of shark diving tourism across Australia to help inform decisions about how sharks are managed.

 

Dr Meekan said whale sharks, known as the gentle giants of the sea, were the most popular drawcard for tourists who spent an estimated $11.6 million for the snorkelling experience. “Ecotourism focused on these animals is now a growing and profitable industry, with a focus that not only uses sharks as a renewable resource, but also engages people in their conservation,” he said.

 

“In Australia, there are four major shark tourism industries, which include snorkelling with whale sharks off Ningaloo Reef in Western Australia, cage diving with white sharks off Port Lincoln in South Australia, diving with grey nurse sharks off the coast of New South Wales and Queensland, and swimming with reef sharks at Osprey Reef in far North Queensland.”

 

The study surveyed 711 tourist divers over a one year period and documented their expenditure, including accommodation, transport, living costs, and other related activities during divers’ trips. Flinders University Associate Professor Charlie Huveneers, lead author of the study and research leader of the Southern Shark Ecology Group, said the white shark cage-diving industry off Port Lincoln, South Australia, was the second most valuable shark viewing industry contributing $7.8 million in direct costs to the economy in 2013–2014. “On top of costs directly associated with shark viewing, white shark and whale shark tourists spend as much again in additional expenditure in the region,” Assoc Prof Huveneers said.

”We found 83 per cent of the white shark cage-divers would not have visited the Port Lincoln region and spent money there if a cage-diving opportunity had not been available.

 

“These additional revenues show that the economic value of this type of tourism do not flow solely to the industry, but are also spread across the region where it is hosted, even in countries with developed economies that are not typically considered to have a dependence on tourism for revenue.”

Assoc Prof Huveneers said wildlife tourism was one of the fastest growing sectors of the tourism industry, but the impact to the natural environment must be measured. “This reiterates the importance of adequate management of these industries to ensure sustainable practices, so future generations have the opportunity to view and interact with sharks in the wild in the same way that we currently can,” he said.

 

Dr Meekan said about half the white shark divers were domestic visitors but the highest percentage of domestic tourists were found in the grey nurse shark-diving industry, at 59 per cent. Most tourists in whale shark snorkelling tours were international tourists (55%) and only 29% were Australian.

 

Total number of divers at each of the locations during the study from March 2013 to June 2014:

Osprey Reef, far North Queensland, 1, 848 tourist divers (reef sharks)

Neptune Islands, South Australia, 10,236 tourist divers (white sharks)

Ningaloo Reef, Western Australia, 22,124 tourist divers (whale sharks)

The combined total of divers to four locations in South East Queensland (Wolf Rock and Julian Rock), and NSW (Fish Rock and Magic Point) 13,978 tourist divers (grey nurse sharks)

 

The paper 'The economic value of shark-diving tourism in Australia' has been published in the journal Reviews in Fish Biology and Fisheries

 

Original article from Australian Institute of Marine Science (2017)

AIMS 12 September 2017

Australia’s new marine parks plan is a case of the Emperor's new clothes

File 20170724 28505 1oghl27
Orca family group at the Bremer Canyon off WA’s south coast. R. Wellard, Author provided
Jessica Meeuwig, University of Western Australia and David Booth, University of Technology Sydney

The federal government’s new draft marine park plans are based on an unsubstantiated premise: that protection of Australia’s ocean wildlife is consistent with activities such as fishing and oil and gas exploration.

Under the proposed plans, there would be no change to the boundaries of existing marine parks, which cover 36% of Commonwealth waters, or almost 2.4 million square kilometres. But many areas inside these boundaries will be rezoned to allow for a range of activities besides conservation.

The plans propose dividing marine parks into three types of zones:

  • Green: “National Park Zones” with full conservation protection
  • Yellow: “Habitat Protection Zones” where fishing is allowed as long as the seafloor is not harmed
  • Blue: “Special Purpose Zones” that allow for specific commercial activities.

Crucially, under the new draft plans, the amount of green zones will be almost halved, from 36% to 20% of the marine park network, whereas yellow zones will almost double from 24% to 43%, compared with when the marine parks were established in 2012.

The government has said that this approach will “allow sustainable activities like commercial fishing while protecting key conservation features”.

But like the courtiers told to admire the Emperor’s non-existent new clothes, we’re being asked to believe something to be true despite strong evidence to the contrary.

The Emperor’s unrobing

The new plans follow on from last year’s release of an independent review, commissioned by the Abbott government after suspending the previous network of marine reserves implemented under Julia Gillard in 2012.

Yet the latest draft plans, which propose to gut the network of green zones, ignore many of the recommendations made in the review, which was itself an erosion of the suspended 2012 plans.

The extent of green zones is crucial, because the science says they are the engine room of conservation. Fully protected marine national parks – with no fishing, no mining, and no oil and gas drilling – deliver far more benefits to biodiversity than other zone types.

The best estimates suggest that 30-40% of the seascape should ideally be fully protected, rather than the 20% proposed under the new plans.

Partially protected areas, such as the yellow zones that allow fishing while protecting the seabed, do not generate conservation benefits equivalent to those of full protection.

While some studies suggest that partial protection is better than nothing, others suggest that these zones offer little to no improvement relative to areas fully open to exploitation.

Environment minister Josh Frydenberg has pointed out that, under the new plans, the total area zoned as either green or yellow will rise from 60% to 63% compared with the 2012 network. But yellow is not the new green. What’s more, yellow zones have similar management costs to green zones, which means that the government is proposing to spend the same amount of money for far inferior protection. And as any decent sex-ed teacher will tell you, partial protection is a risky business.

What do the draft plans mean?

Let’s take a couple of examples, starting with the Coral Sea Marine Park. This is perhaps the most disappointing rollback in the new draft plan. The green zone, which would have been one of the largest fully protected areas on the planet, has been reduced by half to allow for fishing activity in a significantly expanded yellow zone.

Coral Sea Marine Park zoning, as recommended by Independent Review (left) and in the new draft plan (right), showing the proposed expansion of partial protection (yellow) vs full protection (green). From http://www.environment.gov.au/marinereservesreview/reports and https://parksaustralia.gov.au/marine/management/draft-plans/

This yellow zone would allow the use of pelagic longlines to fish for tuna. This is despite government statistics showing that around 30% of the catch in the Eastern Tuna and Billfish fishery consists of species that are either overexploited or uncertain in their sustainability, and the government’s own risk assessment that found these types of fishing lines are incompatible with conservation.

What this means, in effect, is that the plans to establish a world-class marine park in the Coral Sea will be significantly undermined for the sake of saving commercial tuna fishers A$4.1 million per year, or 0.3% of the total revenue from Australia’s wild-catch fisheries.

Contrast this with the A$6.4 billion generated by the Great Barrier Reef Marine Park in 2015-16, the majority of which comes from non-extractive industries.

This same erosion of protection is also proposed in Western Australia, where the government’s draft plan would reduce green zones by 43% across the largest marine parks in the region.

Zoning for the Gascoyne Marine Park as recommended by the Independent Review (left) and the new draft plan (right). http://www.environment.gov.au/marinereservesreview/reports and https://parksaustralia.gov.au/marine/management/draft-plans/

Again, this is despite clear evidence that the fishing activities occurring in these areas are not compatible with conservation. Such proposals also ignore future pressures such as deep-sea mining.

The overall effect is summarised neatly by Frydenberg’s statement that the government’s plans will:

…increase the total area of the reserves open to fishing from 64% to 80% … (and) make 97% of waters within 100 kilometres of the coast open for recreational fishing.

Building ocean resilience

Science shows that full protection creates resilience by supporting intact ecosystems. Fully protected green zones recover faster from flooding and coral bleaching, have reduced rates of disease, and fend off climate invaders more effectively than areas that are open to fishing.

Green zones also contribute indirectly to the blue economy. They help support fisheries and function as “nurseries” for fish larvae. For commercial fisheries, these sanctuaries are more important than ever in view of the declines in global catches since we hit “peak fish” in 1996.

Of course it is important to balance conservation with sustainable economic use of our oceans. Yet the government’s new draft plan leaves a huge majority of Australia’s waters open to business as usual. It’s a brave Emperor who thinks this will protect our oceans.

The ConversationSo let’s put some real clothes on the Emperor and create a network of marine protection that supports our blue economy and is backed by science.

Jessica Meeuwig, Professor & Director, Marine Futures Lab, University of Western Australia and David Booth, Professor of Marine Ecology, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

24 July 2017

Long-term monitoring update to condition of the Great Barrier Reef

Summary

  • Over the past 12 months hard coral cover on the Great Barrier Reef declined by about a quarter, bringing average reef-wide coral cover down to 18%.
  • These findings are based on broadscale (manta tow) surveys of 68 mainly mid- and outer-shelf reefs to March 2017, and do not yet include the impact of Tropical Cyclone Debbie or the further intense coral bleaching in 2017.
  • In general, the impacts of coral bleaching, cyclones and crown-of-thorns starfish outbreaks differ along the length of the Reef.
  • In a longer term context, the scale of the coral cover decline in the Northern GBR since 2013 is unprecedented, first due to 2 severe cyclones and then the severe coral bleaching event which began 2016.
  • In contrast, due to the proliferation of fast growing coral species and the absence of major disturbances, reefs in the Southern GBR continued to recover during the reporting period.

The AIMS Long-term Monitoring Program has released an update on the condition of the Great Barrier Reef (GBR) based on survey data gathered across the entire GBR over the last 32 years. The update, which assesses data captured up to February 2017, describes a system under considerable pressure.

Following on from an AIMS publication in 2012, which described a 27-year decline in coral cover on the Reef, and last year’s update, today’s update shows that average hard coral cover (the most common indicator of reef health) across the entire system declined further during 2016, but the magnitude and trajectory of change varied between the Northern, Central and Southern regions.

Click here to read the full update.

“The Great Barrier Reef is a large, dynamic and important ecosystem, so it is essential that we continually monitor its condition and trends, and update our understanding of the reef’s current health in a broader context”, says Dr Britta Schaffelke, Program Leader for the AIMS ‘Healthy and Resilient GBR’ Program.

“These data show that the impacts of disturbances such as coral bleaching, crown-of-thorns starfish and cyclones vary along the length of the Reef. The decline in coral cover due to severe disturbances over the past two years is quite concerning.”

Dr Hugh Sweatman, AIMS Research Scientist and head of the monitoring team explains, “Our most recent data show that in the Northern region, coral cover is less than half of what is was in 2011, which is unprecedented for the region in the last 30+ years.

“This decline is largely due to severe coral bleaching event that caused significant mortality in 2016, in combination with 2 severe cyclones and continued crown-of-thorns outbreaks.

“The Central region was experiencing a general increase in coral cover until bleaching reduced this in 2016. Coral cover in the Southern region continues to increase from low levels in 2009.”

Trends in mean hard coral cover across the Northern, Central and Southern regions of the Great Barrier Reef over the past 32 years. Read the full report for further detail.
Trends in mean hard coral cover across the Northern, Central and Southern regions of the Great Barrier Reef over the past 32 years. Read the full report for further detail.

The Southern GBR region during 2016/2017. Coral cover on reefs of the Southern GBR has recovered remarkably since it was obliterated by storms in 2008 and then Cyclone Hamish in 2009. The reef slopes of Lady Musgrave Reef and Erskine Reef, pictured here, are now covered in tabulate and branching Acropora sp. corals.

 

The update includes information taken from the extensive surveys taken over 2016 and into early 2017, but does not include data after the 2017 severe bleaching event, or Tropical Cyclone Debbie. This information will be included in future updates.

 

Long-term outlook for the Great Barrier Reef

The researchers highlight that it is difficult to predict the recovery of the Great Barrier Reef. “Despite the fact that we have over 30 years of information from the Program, we are only now starting to have data gathered over a sufficiently long period of time to allow us to understand the reef recovery process under a changing climate,” says Dr Schaffelke.

“Recent analysis of this long-term data set shows that recovery can be severely hampered by impacts associated with climate change, particularly increasing sea temperatures.”

A recent AIMS study indicated that recovery after a major heat-stress event in 2002 on the GBR was slowed, compared to previous recovery periods, and that affected reefs suffered high rates of coral disease. A separate AIMS study on the effects of cyclones concluded that, while recovery can be strong on some reefs, the projected increases in intensity of cyclones as a result of climate change could make it more difficult for reefs to recuperate.

Read the update in full here.

AIMS’ Long-term Monitoring Program is the longest, most comprehensive source of information on the health of corals for the Great Barrier Reef.

June 1 2017

Original article from Australian Institute of Marine Science (2017)

Feeling helpless about the Great Barrier Reef? Here’s one way you can help

Justin Marshall, The University of Queensland; Chris Roelfsema, The University of Queensland, and Diana Kleine, The University of Queensland

It is easy to feel overwhelmed when confronted with reports of the second mass bleaching event on the Great Barrier Reef in as many years. But there is a way to help scientists monitor the reef’s condition. The Conversation

CoralWatch is a citizen science program started at The University of Queensland 15 years ago, with two main aims: to monitor the environment on a vast scale, and to help people get informed about marine science.

These goals come together with coral health monitoring. Divers, snorkelers or people walking around reef areas during low tides can send us crucial information about coral bleaching, helping us to build detailed pictures of the health of different reefs.

Participants can use a colour chart, backed up through the CoralWatch app or website, to measure accurately the colour and type of coral they see. The chart covers 75% of known corals, and can be used with no prior training.

We also ask people to enter the type of coral (branching, boulder, plate or soft), the location, and the weather. This allows scientists to identify the location and extent of any problems quickly (and is an excellent way to learn more about our reefs).

In fact, you don’t even have to go to a reef to participate and discover through CoralWatch; we have classroom and virtual reef systems, and just talking the problem through can help.

CoralWatch chart. Volunteers match the colour and four basic coral types: branching, boulder, plate and soft. CoralWatch

The graphs shown below are samples of CoralWatch data from the northern and southern reef during 2016’s catastrophic mass bleaching event, while the pair of graphs further down the page show data from just a few days ago at Lady Elliot Island and the very remote North Mariana Islands in the West pacific.

The Heron Island graph shows a healthy reef, as the southern areas of the reef escaped the worst of the bleaching last year. In contrast, Monsoon Reef (which lies off Port Douglas) and many others in the north bleached badly, or in some cases simply died.

Scores averaging between four and six are normal and represent good levels of symbiotic algae, which generate nutrients for the coral. Scores below three signify that coral is in distress.

The impact of this year’s mass bleaching is still being quantified. However, reefs in the middle section and far south of the reef – such as Lady Elliot Island – are now showing varying degrees of bleaching, from light to severe. Many of the remaining corals in the north are also showing signs of bleaching again.

What seems certain is that we will lose many more corals, along with the fish and invertebrate life they support, again this year.

The results for the North Mariana Islands, from a CoralWatch survey conducted last week, shows mid-level coral bleaching and demonstrates that even very remote reefs are not climate-proof.

Australians increasingly believe the government needs to act on climate change, and some of this change in opinion is likely fuelled by continued reports of coral bleaching.

CoralWatch doesn’t only help build a detailed picture of reef health. Like other citizen science projects, such as Reef Check, it can help speed up our fatally slow response to climate change. There are three key benefits.

First, we need to improve mutual understanding between scientists and the public. The CoralWatch mantra is: tell me and I’ll forget; teach me and I may remember; involve me and I’ll learn. Citizen science is a natural fit for everyone, no matter your level of education or knowledge.

Children are the citizens of the future, and helping them to understand their changing world is a moral and social imperative. CoralWatch works closely with schools and groups like the Marine Teachers Association of Queensland, and is used in more than 75 countries worldwide.

Second, we need to encourage lifestyle change. Many people, as they become more engaged in citizen science, will naturally adopt more environmentally friendly habits. Getting involved in protecting the Great Barrier Reef – and other citizen science projects – can be a great dose of perspective on our place in the natural world.

However, as personally rewarding as they can be, individual lifestyle choices alone won’t deliver the rapid and widespread change we need to save our reefs. That’s why we need to bridge the disconnect between what most of Australia wants and the politicians who ultimately have the power to fast-track change. Citizen scientists are also informed voters and consumers, who can demand better policies from companies and governments.

The future of the Great Barrier Reef is in the hands of Australians, and it will take all of us to preserve it for our children.

Justin Marshall, ARC Laureate Fellow, The University of Queensland; Chris Roelfsema, Research Fellow (Coastal and Marine), The University of Queensland, and Diana Kleine, Coral Watch Project Manager, The University of Queensland

This article was originally published on The Conversation. Read the original article.

April 12 2017

Exceptional fish diversity found on Australia’s north-west oceanic shoals

Scientists have found exceptionally diverse and abundant coral-reef fish communities at submerged oceanic shoals near Ashmore Reef some 400 kilometres off north-western Australia.

The north-west oceanic shoals - natural banks that rise from the seabed, in this case from depths of 200 m up to within 15─50 m of the surface - were found to support the highest fish diversity reported globally for deeper ‘mesophotic’ or middle light level coral reefs (20─80 metre depth) and may support the resilience of shallower coral reef communities.

The study of nine oceanic shoals in the Timor Sea was led by the Australian Institute of Marine Science (AIMS) and reported recently in Coral Reefs.

“Traditionally scientists and managers have focused on understanding threats to shallow coral reef communities,” says Dr Cordelia Moore, a joint research associate from Curtin University and AIMS. “Deeper reefs beyond the reach of SCUBA-based surveys are poorly studied. Our survey used remote monitoring technologies including multibeam acoustics, photography, towed video, remotely operated vehicles and baited remote underwater systems. We found 341 species of fish from 47 families, including 10 shark, five ray and two sea snake species. The fish communities were 1.4 times as diverse and almost twice as abundant as those on similar deeper coral reefs on the Great Barrier Reef.”

The relatively clear waters in the study region allow fauna such as hard corals and macroalgae to grow in depths of up to 60─70 m, supporting diversity similar to shallow reef systems. The fishes may also benefit from enhanced productivity driven by local upwelling and interacting currents. “Characterising these deeper coral-reef communities is critical because mesophotic reefs may provide a unique contribution to biodiversity as well as potentially enhancing the connectivity and resilience of surrounding shallow reefs,” Dr Moore says.

While progress has been made understanding the connectivity within and between coral reefs, the degree of connectivity between shallow and deep coral reef populations is largely unknown. Deeper reefs may act as important refugia, providing a source of larvae, juveniles or adults, to replenish more exposed shallow-water reefs after impacts such as coral bleaching, storms and cyclones, fishing pressure and warming events. This is especially important to understand in regions such as north-western Australia, which is experiencing increasing pressures from human activities such as fishing and petroleum industries.

“Currently, 30% of north-east Australia’s mesophotic reefs are within no-take management zones of the Great Barrier Reef. In contrast, just 1.3% of Australia's north-west oceanic shoals are in designated no-take areas,” Dr Moore says. “Now that we know these habitats support fish biodiversity of global significance, ensuring we understand and manage these deeper reefs is critical.”

The north-west oceanic shoals are of conservation interest at both a regional and global scale. They support many species of conservation interest including the humphead wrasse, greater hammerhead and various sharks, rays and groupers.

Australia’s north-west is one of the country’s most economically significant marine regions, producing most of Australia’s domestic and exported oil and gas. It also has high-value ecological habitats supporting a range of protected species such as dugong, turtle and whale sharks. The need for baseline ecological data for this region was highlighted by the 2009 uncontrolled release from the Montara wellhead platform, which triggered monitoring of key ecological communities to ensure the protection and sustainable management of natural and economic values into the future.

March 23 2017

Original article from Australian Institute of Marine Science (2017)

More intense cyclones pose threat to the world’s coral reefs

Australia's north-west oceanic shoals support the highest fish diversity for middle light level coral reefs (20─80 metre depth) globally. Image © AIMS
Australia's north-west oceanic shoals support the highest fish diversity for middle light level coral reefs (20─80 metre depth) globally. Image © AIMS

In the wake of the Great Barrier Reef’s most intense coral bleaching event, researchers at the Australian Institute of Marine Science (AIMS) report that predicted increases in the intensity of tropical cyclones due to climate change could greatly accelerate coral reef degradation and make it far more difficult for reefs to bounce back from disturbances.

Research published today in Global Change Biology investigated whether predicted increases in cyclone intensity might change the nature of coral reefs. AIMS scientists used the world’s largest coral reef ecosystem, the Great Barrier Reef, as a test case to understand what lies ahead for coral reefs.

 

A team of researchers led by AIMS scientist, Alistair Cheal, first assessed the ecological impacts to the Reef from cyclones, based on multiple data sets collected from the region. The Institute’s Long-term Monitoring Program contributed crucial broad-scale field data from as far back as 1996, including data captured after recent severe cyclone events (Hamish in 2009, Yasi in 2011 and Ita in 2014). “Here at AIMS, we have been closely monitoring reefs along the Great Barrier Reef for over 20 years through the Long-term Monitoring Program. An analysis of the data collected from outer reefs indicates that a recent spate of unusually intense cyclones caused record destruction of corals and great loss of fishes over >1000 km,” stated Mr Cheal, the study’s lead author.

 

Using modelling tools, the data was then contextualised in terms of future climate-driven threats based on published predictions for increasing cyclone intensity. The scenarios yielded grim consequences for reefs.

“What we found was that the return time of cyclone sequences likely to cause extreme and widespread losses of corals and fishes could increase from hundreds of years, to once every 25 years within this century. This presents a real threat to the status and recovery of coral reef ecosystems,” Mr Cheal concluded.

The implications extend beyond the projected coral and fish losses through associated decreases in biodiversity, increased vulnerability of coral reefs to long-term degradation and associated flow-on effects to social and economic services.

 

The paper: “The threat to coral reefs from more intense cyclones under climate change” by Alistair J. Cheal, M. Aaron MacNeil, Michael J. Emslie and Hugh Sweatman is available online today.

February 1 2017

Original article from Australian Institute of Marine Science (2017)

Five ways to reduce your chances of encountering a shark this summer

If the thought of going into the ocean this summer fills you with trepidation, here are five things you can do to reduce your risk of encountering a shark.

1. SWIM CLOSE TO SHORE

A WA Department of Fisheries report found that of the 26 shark attacks in the State between 1991 and September 2011, only one was within 30m of the shore.

Two-thirds of the attacks were more than 200m offshore, and SCUBA divers and snorkelers made up almost half of shark attack victims. Only three of the attacks were on swimmers.

2. ENJOY THE WARMER WATER

White sharks prefer cooler waters and two-thirds of the attacks in WA in the 20 years to 2011 occurred in water temperatures below 200C. Only one was in waters above 220C.

This preference for cooler water plays out in statistics showing there is a higher rate of attacks off the southern half of the WA coast.

More attacks also happen in winter and spring rather than summer and autumn, despite more people being in the water in warmer weather.

3. STAY IN THE SHALLOWS

And by shallows, we mean where the water is less than 5m deep. More than this and your risk of running into a shark increases.

4. WEAR A SHARK SHIELD

For a long time, the jury was out on these electronic shark repellents but UWA-led research has delivered a result that will be music to ocean lovers’ ears—Shark Shields do help to repel white sharks.

The study found the Shark Shield produced an effective deterrent field of about 1.3m from the devices electrodes.

Shark Shields prevented sharks interacting with a bait 10 out of 10 times on an animal’s first approach, and nine out of 10 times on the second approach.

With models starting at $600 a pop, the device is not for everyone.

But for divers and others with good reason to ignore the first three avoidance strategies, a Shark Shield might be worth considering.

5. AVOID SEAL OR SEA LION COLONIES

Finally, the Fisheries research was unable to rule out proximity to seal and sea lion colonies as a factor in shark attacks.

While the majority of attacks occurred more than 10km from a colony, the study found this may reflect relatively low levels of human activity in these areas.

It concluded it remains plausible that there is an increased risk of attack near seal and sea lion colonies.

This article was originally published on Particle. Read the original article.

28 January 2017

Shark study reveals taste buds were key to evolution of teeth

Gareth J. Fraser, University of Sheffield

The first creatures to evolve teeth didn’t have jaws. Many scientists believe these ancient fish developed the first tooth-like structures on their skin that were similar to the “denticle” scales that still cover sharks today, even after 500m years of evolution. It is thought that these denticles gradually migrated into the mouth to form oral teeth. However, research conducted by my colleagues and I suggests modern teeth – at least in sharks – may have also evolved from taste buds. In fact, we have shown that both teeth and taste buds develop from the same stem cells in an embryonic shark’s mouth.

While human taste buds sit separately on the tongue, many animals – particularly non-mammal vertebrates – have taste buds that line the regions of the jaws that also house teeth. We can see this especially clearly in sharks, which have multiple rows of continually regenerating teeth. The regions of a shark’s mouth with the highest concentration of taste buds are directly behind the last row of teeth in both the upper and lower jaws, suggesting an important association between biting and tasting.

Shark denticles close up. Pascal Deynat/Odontobase, CC BY-SA

By studying shark embryos, we were able to track the stem cells in the mouth before teeth and taste buds formed. We discovered that these cells migrate and contribute to both structures. Even later in development when teeth and taste buds were established, taste-linked cells could still migrate to tooth forming regions deep in the jaw.

These stem cells also govern the teeth’s ability to regenerate throughout the shark’s life, and it turns out the shark’s taste buds also share this ability. This suggests that teeth and taste buds not only develop and function together but may also have a close evolutionary link.

Wait a minute, this doesn’t taste like hot dog. Julochka/Flickr, CC BY-NC

Genetic similarities

We also tested the idea that teeth in the mouth also share an evolutionary history with skin denticles. Although both are made from similar materials – dentine and enamel-like mineralised tissues – they have a number of clear differences. For example, shark denticles cannot regenerate like their teeth can.

Our research findings echoed this at a genetic level. The way genes are turned on and off in both teeth and denticle cells is almost identical. But a key exception is in a gene known as “sox2”, a stem-cell marker involved in the development and regeneration of many tissues in the body. We found the gene is not turned on in shark denticles but is involved in oral tooth development and regeneration. And it is also expressed in taste buds.

This led us to the new theory that shark teeth actually evolved their regenerative ability from taste buds. We know that taste buds evolved in ancient fishes before oral teeth because taste bud-like structures are present in jawless fishes such as lampreys. So if denticles did migrate into the mouth and evolve into oral teeth, their development may have become linked with that of taste buds, developing from the same cells and adopting their regenerative ability. This might have been because it gave the animals the advantage of tasting and processing food at the same time. Which means sharks may have their taste buds to thank for their conveyor belt of regenerating teeth.

The Conversation

Gareth J. Fraser, Lecturer in Evolutionary Developmental Biology, University of Sheffield

This article was originally published on The Conversation. Read the original article.

18 January 2017

Teenage male whale sharks don’t want to leave home

Researchers from The University of Western Australia and Australian Institute of Marine Science, (AIMS) and collaborators across the Indian Ocean have completed a huge photo-identification study to assess the seasonal habits of whale sharks in the tropics. They were surprised to discover that the male juveniles didn’t seem to venture too far from home. The researchers used photo-identification data, collected by citizen scientists, including crews working on the tour boats, and researchers, to assess the connectedness of five whale shark aggregation (gathering) sites across the entire Indian Ocean over a decade.

 

Comparing the unique markings of more than 1000 individual whale sharks, the team appraised whether the seasonal gatherings of these animals could be linked by migration. After sifting through over 6000 photos, they found that, on average, 35 per cent of individuals were re-sighted at the same site in more than one year but that no sharks were found to have moved across the Indian Ocean. One shark was tracked between regional localities from the Seychelles to Mozambique, suggesting that links do occur but that populations on either side of the Indian Ocean are likely to be distinct.

 

A researcher takes a photo-ID shot of a whale shark. Image: Peter Verhoog/Dutch Shark Society
A researcher takes a photo-ID shot of a whale shark. Image: Peter Verhoog/Dutch Shark Society

PhD researcher and lead author, Samantha Andrzejaczek from UWA’s Oceans Institute and AIMS, said the researchers had initially thought the juveniles crossed oceans to visit other important sites during their migration, however it appeared their movements were strictly regional. “This is good news for our whale sharks, Ms Andrzejaczek said. “Whale sharks are under threat from human impacts of hunting and ship strike and it makes it much easier to plan for conservation if we only have to deal with neighbouring countries in each region rather than localities spread across the entire Indian Ocean.” Not only were the whale sharks staying in the region, many of them returned multiple times to Ningaloo, in Western Australia’s North West. “Our whale sharks at Ningaloo are mostly male teenagers. They don’t become reproductive adults until they grow to sizes of more than eight metres in length and this is thought to take up to 30 years,” Ms Andrzejaczek said. “Our young males don’t seem in any hurry to move on from their feeding grounds at Ningaloo – we have some individuals that have now been sighted here for 19 years and have even matured.”

 

Study co-author, Dr Mark Meekan of AIMS, said the study also highlighted the unknown facts about these sharks. “Although they are the largest fish in the sea, they are still very hard to find – it’s a very big ocean out there. “We know the teenage males are homebodies, but that does not necessarily apply to the rest of the population,” he said. 

 

Adult females and males are rarely sighted at Ningaloo and at all other locations in the Indian Ocean.

“Finding these animals is going to take some effort, as our computer–simulation analysis of the data showed that we need more photos from more localities just to get a better estimate of migration patterns at even regional scales,” Dr Meekan said. Ms Andrzejaczek said the photo-identification approach was a great opportunity for the public to get involved in whale shark conservation. “Many of the photos used in the study were sourced from tourists who snorkelled with the sharks as part of the tourist industry, as well as the industry videographers and tour guides, she said. “We even downloaded videos from YouTube to get identification shots. “Social media provides a great source of science for charismatic animals like whale sharks and we hope to encourage more engagement across the Indian Ocean.”

 November 16 2016

The study, part-funded by Quadrant Energy Ltd and the Department of Parks and Wildlife WA, was published today in Royal Society Open Science.

Original article from Australian Institute of Marine Science (2016)

Could ‘whale poo diplomacy’ help bring an end to whaling?

Indi Hodgson-Johnston, University of Tasmania

Japan’s fleet has left port for another season of “scientific” research whaling in the Southern Ocean.

Like last year, there is little that anyone can do to legally rescind Japan’s self-issued lethal research permit – a fact that has led to calls for more pragmatism and less confrontation in efforts to conserve whales.

Such avenues include greater collaboration between the International Whaling Commission (IWC) and other organisations, and a renewed emphasis on marine ecosystem research in the Southern Ocean.

How whale poo can help

While Japan’s new whaling program dominated the IWC’s summit last month, a Chilean-sponsored resolution nicknamed the “whale poo” resolution was also quietly adopted at the meeting.

More formally known as the Draft Resolution on Cetaceans and Their Contribution to Ecosystem Functioning, the resolution notes the growing scientific evidence that whale faeces are a crucial source of micronutrients for plankton.

The resolution will lead to a review of the ecological, environmental, social and economic aspects of whale defecation “as a matter of importance”, while the IWC’s Scientific Committee will review the research and identify any relevant knowledge gaps.

Why is this important?

Much of the Southern Ocean is described as high-nutrient, low-chlorophyll (HNLC) waters. This means that the despite high concentrations of important nutrients such as nitrate and phosphate, the abundance of phytoplankton is very low.

Phytoplankton is the base of the marine food chain, and plays an important role in the global carbon cycle by removing carbon dioxide in the atmosphere through photosynthesis. However, the growth of phytoplankton in large HNLC regions of the Southern Ocean is limited by the availability of a key micronutrient: iron. In essence, the Southern Ocean is anaemic, and whale poo is the remedy.

It works like this. Antarctic krill graze on phytoplankton, taking up the iron. The krill are then consumed by whales, which store some iron for their own use as an oxygen carrier in their blood (as in ours), but also expel large amounts of iron in their faeces.

Adult blue whales, for example, consume about 2 tonnes of krill a day, and the amount of iron in their faeces is more than 10 million times higher than normal seawater.

Conveniently, whale poo is liquid, and is released at the surface where it can act as a fertiliser to promote phytoplankton growth in the ocean’s sunlit top layers. Therefore, whales are part of a positive feedback loop that helps sustain marine food chains.

The whale poo positive feedback loop. Indi Hodgson-Johnston/University of Tasmania

More whales obviously make more whale poo, so it makes sense that more research and protection should be afforded to whales to ensure a healthier marine ecosystem.

Scientists collect whale faeces from the surface of the water, making this a great way to do whale research without killing or harming them.

What about scientific whaling?

Some have suggested that the legal arguments against scientific whaling are well and truly exhausted, and that controlled commercial whaling could be the next step. Assuming that anti-whaling nations such as Australia would not follow such a pathway, and that hard law options are frustrated, other avenues to end lethal research are needed.

The whale poo resolution also aims to increase the IWC’s existing collaborations with various research organisations. This includes the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), of which Japan is a member. CCAMLR made headlines last month when it approved, by consensus, the world’s largest marine protected area in Antarctica’s Ross Sea.

While the CCAMLR Convention states that nothing in it shall derogate from the rights and obligations under the Whaling Convention, the role of whales are important to CCAMLR’s ecosystem approach to conserving marine life in the Southern Ocean.

Japan’s current whaling program has the stated scientific objective of investigating “the structure and dynamics of the Antarctic marine ecosystem through building ecosystem models”. This aligns with both the research needed for CCAMLR’s ecosystem approach and the Australian Antarctic Division’s own research priorities.

With an emphasis on research such as ecosystem modelling, collaborations that include and value Japan’s abundant non-lethal research in the area could help to most of the stated scientific objectives of Japan’s whaling program without harming whales.

Of course, many people contend that the main purpose of Japan’s whaling program is not scientific. But this doesn’t change the fact that the same old battles at sea and in the courts have done little to prevent the taking of whales. The Whaling Convention cannot be changed, and nor can Japan’s interpretation of it. A different tack is clearly needed in both law and diplomacy.

As the new marine protected area shows, Antarctica is a proven platform of peace. Increasing joint scientific research, and riding on the wave of the recent success in the Ross Sea, may provide fresh dialogue with which to resolve the stalemate. What we need is a newly respectful, non-combative discourse with Japan which, whaling aside, is a brilliant contributor to Antarctic science.

Joint Australian and Japanese research in other areas of Southern Ocean and Antarctic science has a long and friendly history. It is upon these longstanding and positive relationships that research addressing relevant objectives should be focused and funded.

Constructive intervention

While some, including the Australian Greens, have called for an Australian government vessel to intervene, Japan is whaling in waters that are recognised by most countries as the high seas.

Since the landmark 2014 International Court of Justice ruling, Japan no longer consents to that court’s jurisdiction on matters of living marine resources. And with little recognition of Australian jurisdiction in the area, and the risk of any intervention being illegal under laws of the sea, there is little hope for successful international legal action. Sending an Australian ship to intervene or collect evidence would therefore be largely futile.

On the other hand, researching marine ecosystems in the Southern Ocean is difficult and expensive. Instead of sending a customs vessel, Australia should divert its funds and attention to research that will boost our understanding of the Southern Ocean ecosystem and its role in the global carbon cycle.

By increasing knowledge and recognition of whales’ role in the Southern Ocean ecosystem, the resolution offers yet another avenue for developing norms of non-lethal whale research that are recognised as legitimate by all International Whaling Commission members.

Perhaps in one of Australia’s most vexed diplomatic issues with their close ally, whale poo could pave the way to more intensive and thoughtful scientific collaborations, and help deliver a peaceful end to Japanese whaling in the Southern Ocean.

The author would like to thank Lavy Ratnarajah, a biogeochemist at the Antarctic Climate and Ecosystems CRC, for her kind assistance with the scientific aspects of this article. The views expressed are solely those of the author.

The Conversation

Indi Hodgson-Johnston, Antarctic Law Researcher, PhD Candidate, Institute for Marine and Antarctic Studies and the Antarctic Climate and Ecosystems CRC, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Bright city lights are keeping ocean predators awake and hungry

Damon Bolton, UNSW Australia; Alistair Becker; Emma Johnston, UNSW Australia; Graeme Clark, UNSW Australia; Katherine Dafforn, UNSW Australia, and Mariana Mayer-Pinto, UNSW Australia

Light pollution is changing the day-night cycle of some fish, dramatically affecting their feeding behaviour, according to our recently published study.

In one of the first studies of its kind, we found that increased light levels in marine habitats, associated with large coastal cities, can significantly change predator-prey dynamics.

We used a combination of underwater video and sonar to spy on these communities and record how their behaviour changed. Like us, the animals in our study slowed down at night. Predatory fish became sluggish and had little appetite.

But when the lights went on some of these same predators disappeared, while others feasted on the well-lit underwater buffet. Overall, there was much greater predation on seafloor-dwelling communities when the night waters were lit.

Reprinted from Science of The Total Environment, Vol. 576, Bolton et al., Coastal urban lighting has ecological consequences for multiple trophic levels under the sea, pp1-9, Copyright (2017), with permission from Elsevier

The dark side of light

The dark blanket of night might once have heralded time to rest, but the great pace of human activity has required that nights get shorter and days become artificially longer.

As the sun sets, streetlights flicker to life, generators go into overdrive and the landscape becomes dotted with artificial light, producing some of the most spectacular images from space. The sky glow from major urban centres can be seen more than 300km away.

While this may have enhanced productivity, we are starting to realise that the ecological effects on animals that have evolved under natural day–night cycles are significant.

Artificial lighting of outdoor areas began in earnest in the late 1700s. We have been manipulating lighting regimes for centuries for purposes that include increased egg production in hens and to encourage birds to sing during winter.

However, we have only recently begun to investigate the damaging ecological consequences. We now know that lighting used on offshore energy installations causes increased deaths of migratory birds and beach lighting can cause turtle hatchlings to become disoriented and reduce the chances of a safe journey from nest to sea.

But these are the more obvious impacts of a disrupted day length. More subtle changes in animal behaviours caused by artificial lighting have yet to be illuminated (pun intended!).

Lights, camera, predation

Using LED spotlights, we manipulated the light patterns underneath a wharf in Sydney Harbour, illuminating sessile (attached to the seafloor and wharf) invertebrate prey communities to fish predators. We recorded fish numbers and behaviour under different lighting scenarios (day, night and artificially lit night), and the prey communities were either protected or exposed to predators.

Despite different changes in different species, overall we found that more animals were getting eaten. The main predators were yellowfin bream (Acanthopagrus australis) and leatherjackets (Monocanthidae). The prey being consumed included barnacles, bryozoans (encrusting and arborescent), ascidians (solitary and colonial), sponges and bivalves.

Large predators are very important in ecosystems and play a major role in the structure of the whole food chain. If these predators are removed from the system, there are cascading effects and sometimes entire ecosystems collapse.

So we should expect that changes to the behaviour of predators will have major consequences for prey communities. When we turned on the lights, we found prey communities changed to more closely resemble communities exposed to predation during the day. This increase in predation pressure highlights the effect prey communities face under a brightening future, possibly leading to shifts in prey structure with flow-on effects to ecosystem functioning.

A bright future

About 70% of the world’s largest cities are situated on the coast, and there has been a corresponding increase in urban lighting that also illuminates the underwater world.

When coupled with the chemical pollution and increasing noise that our urban activities are introducing into waterways, the outlook is harsh for our marine life.

We are beginning to understand the effects of artificial light on the natural world around us, but there is still a long way to go – especially in the underwater realm. World populations continue to grow and increasing pressure is placed on our coastal fringes to support this growth, so we need to find solutions to reduce our impact wherever we can.

One solution for light pollution is to control the wavelength of light used depending on the location of the lights. LEDs are increasingly being used because they are effective and cheap to run, but they emit a broad spectrum with peaks in blue and green wavelengths, which penetrate to great depths underwater. Moving towards other spectra, such as red which doesn’t penetrate as far, could reduce the problem.

Ultimately, while our requirement for artificial light at night is unlikely to diminish, darkness remains a necessary component of many animal’s lives. We must do our best to bring back their night.

The Conversation

Damon Bolton, Associate Lecturer in coastal resource management and environmental impact, UNSW Australia; Alistair Becker, Scientific Officer; Emma Johnston, Professor and Pro Vice-Chancellor (Research), UNSW Australia; Graeme Clark, Research Associate in Ecology, UNSW Australia; Katherine Dafforn, Senior Research Associate in Marine Ecology, UNSW Australia, and Mariana Mayer-Pinto, Research Associate in marine ecology, UNSW Australia

This article was originally published on The Conversation. Read the original article.

November 25 2016

The oceans are full of plastic, but why do seabirds eat it?

Matthew Savoca, University of California, Davis

Imagine that you are constantly eating, but slowly starving to death. Hundreds of species of marine mammals, fish, birds, and sea turtles face this risk every day when they mistake plastic debris for food.

Plastic debris can be found in oceans around the world. Scientists have estimated that there are over five trillion pieces of plastic weighing more than a quarter of a million tons floating at sea globally. Most of this plastic debris comes from sources on land and ends up in oceans and bays due largely to poor waste management.

Plastic does not biodegrade, but at sea large pieces of plastic break down into increasingly smaller fragments that are easy for animals to consume. Nothing good comes to animals that mistake plastic for a meal. They may suffer from malnutrition, intestinal blockage, or slow poisoning from chemicals in or attached to the plastic.

Many tube-nosed seabirds, like this Tristram’s storm petrel (Oceanodroma tristrami), eat plastic particles at sea because they mistake them for food. Sarah Youngren, Hawaii Pacific University/USFWS, Author provided

Despite the pervasiveness and severity of this problem, scientists still do not fully understand why so many marine animals make this mistake in the first place. It has been commonly assumed, but rarely tested, that seabirds eat plastic debris because it looks like the birds’ natural prey. However, in a study that my coauthors and I just published in Science Advances, we propose a new explanation: For many imperiled species, marine plastic debris also produces an odor that the birds associate with food.

A nose for sulfur

Perhaps the most severely impacted animals are tube-nosed seabirds, a group that includes albatrosses, shearwaters and petrels. These birds are pelagic: they often remain at sea for years at a time, searching for food over hundreds or thousands of square kilometers of open ocean, visiting land only to breed and rear their young. Many are also at risk of extinction. According to the International Union for the Conservation of Nature, nearly half of the approximately 120 species of tube-nosed seabirds are either threatened, endangered or critically endangered.

Although there are many fish in the sea, areas that reliably contain food are very patchy. In other words, tube-nosed seabirds are searching for a “needle in a haystack” when they forage. They may be searching for fish, squid, krill or other items, and it is possible that plastic debris visually resembles these prey. But we believe that tells only part of a more complex story.

A sooty shearwater (Puffinus griseus) takes off from the ocean’s surface in Morro Bay, California. Mike Baird/Flickr, CC BY

Pioneering research by Dr. Thomas Grubb Jr. in the early 1970s showed that tube-nosed seabirds use their powerful sense of smell, or olfaction, to find food effectively, even when heavy fog obscures their vision. Two decades later, Dr. Gabrielle Nevitt and colleagues found that certain species of tube-nosed seabirds are attracted to dimethyl sulfide (DMS), a natural scented sulfur compound. DMS comes from marine algae, which produce a related chemical called DMSP inside their cells. When those cells are damaged – for example, when algae die, or when marine grazers like krill eat it – DMSP breaks down, producing DMS. The smell of DMS alerts seabirds that food is nearby – not the algae, but the krill that are consuming the algae.

Dr. Nevitt and I wondered whether these seabirds were being tricked into consuming marine plastic debris because of the way it smelled. To test this idea, my coauthors and I created a database collecting every study we could find that recorded plastic ingestion by tube-nosed seabirds over the past 50 years. This database contained information from over 20,000 birds of more than 70 species. It showed that species of birds that use DMS as a foraging cue eat plastic nearly six times as frequently as species that are not attracted to the smell of DMS while foraging.

To further test our theory, we needed to analyze how marine plastic debris smells. To do so, I took beads of the three most common types of floating plastic – polypropylene and low- and high-density polyethylene – and sewed them inside custom mesh bags, which we attached to two buoys off of California’s central coast. We hypothesized that algae would coat the plastic at sea, a process known as biofouling, and produce DMS.

Author Matthew Savoca deploys experimental plastic debris at a buoy in Monterey Bay, California. Author provided

After the plastic had been immersed for about a month at sea, I retrieved it and brought it to a lab that is not usually a stop for marine scientists: the Robert Mondavi Institute for Food and Wine Science at UC Davis. There we used a gas chromatograph, specifically built to detect sulfur odors in wine, beer and other food products, to measure the chemical signature of our experimental marine debris. Sulfur compounds have a very distinct odor; to humans they smell like rotten eggs or decaying seaweed on the beach, but to some species of seabirds DMS smells delicious!

Sure enough, every sample of plastic we collected was coated with algae and had substantial amounts of DMS associated with it. We found levels of DMS that were higher than normal background concentrations in the environment, and well above levels that tube-nosed seabirds can detect and use to find food. These results provide the first evidence that, in addition to looking like food, plastic debris may also confuse seabirds that hunt by smell.

When trash becomes bait

Our findings have important implications. First, they suggest that plastic debris may be a more insidious threat to marine life than we previously believed. If plastic looks and smells like food, it is more likely to be mistaken for prey than if it just looks like food.

Second, we found through data analysis that small, secretive burrow-nesting seabirds, such as prions, storm petrels, and shearwaters, are more likely to confuse plastic for food than their more charismatic, surface-nesting relatives such as albatrosses. This difference matters because populations of hard-to-observe burrow-nesting seabirds are more difficult to count than surface-nesting species, so they often are not surveyed as closely. Therefore, we recommend increased monitoring of these less charismatic species that may be at greater risk of plastic ingestion.

Finally, our results provide a deeper understanding for why certain marine organisms are inexorably trapped into mistaking plastic for food. The patterns we found in birds should also be investigated in other groups of species, like fish or sea turtles. Reducing marine plastic pollution is a long-term, large-scale challenge, but figuring out why some species continue to mistake plastic for food is the first step toward finding ways to protect them.

The Conversation

Matthew Savoca, Ph.D. Candidate, University of California, Davis

This article was originally published on The Conversation. Read the original article.

November 14 2016

Sea Shepherd slams Baird's 1940's backwards approach to saving lives - merely another false sense of security

October 12 2016

 

In response to the news today that NSW Premier Mike Baird will approve shark mesh nets for Ballina NSW, Sea Shepherd Australia had the following response.

"There is no way that the NSW Government can justify calling this a 'trial'. Shark nets are old technology. We know how they work. We know what they will do. Upwards of 80% of the catch will be by-catch and that will include dolphins from the Richmond River pod. We know that shark bite incidents will still occur as they have at netted beaches in Queensland. These nets will merely give surfers a dangerous false sense of security," remarked Jonathan Clark Queensland Coordinator - Apex Harmony Campaign.

"Back in 1946, after over a decade of shark nets off the NSW coast and many unwanted shark encounters at netted beaches, the then Premier of New South Wales, William McKell stated that nets were ‘quite valueless’ in terms of public safety.

He further went onto say, ‘Worse, it would possibly lull the public into a false sense of security, leading to diminished watchfulness and possibly tragedy." This was 70 years ago and scientists continue to echo these sentiments today, to no avail, as politicians with no experience in this area continue to make emotive, knee jerk and illogical decisions to shark mitigation.

The Queensland model has wiped out over 85,000 marine animals, with the majority being non target species such as whales, dolphins, reef sharks, dugongs, turtles and rays and now NSW will be further adding to the annihilation of our precious marine life off our coasts. No longer will we see pods of dolphins swimming freely off the NSW coast, they will be running a gauntlet of dolphin killing meshing devices.

With a humpback population on the rise, so too will be the entanglements of these protected species, just like off QLD this year with over 10 entanglements this year and there will be more to come, which also puts the rescuers lives at risk as they try to disentangle the whales.

Premier Baird needs to listen to the words of former Premier McKell, and drop this insane approach to shark mitigation, as nets are not a barrier, and are merely a false sense of security that wipe out tens of thousands of marine life and put human lives further at risk.

In 2016, with so many modern day smart and innovative shark mitigation systems and products, we no longer have to choose between keeping people safe or protecting our precious marine life, we can do both,” said Sea Shepherd Australia Managing Director Jeff Hansen.

Japanese stingray caught in shark net off the Gold Coast, from Seashephard.
Japanese stingray caught in shark net off the Gold Coast, from Seashephard.

Original article: http://www.seashepherd.org.au/news-and-commentary/news/sea-shepherd-slams-baird-s-1940-s-backwards-approach-to-saving-lives-merely-another-false-sense-of-security.html

Marine parks and fishery management: what's the best way to protect fish?

Closing parts of the ocean to fishing displaces fishers to other areas. Tuna image from www.shutterstock.com
Closing parts of the ocean to fishing displaces fishers to other areas. Tuna image from www.shutterstock.com
Caleb Gardner, University of Tasmania

The federal government is considering changes to Australia’s marine reserves to implement a national system. This week The Conversation is looking at the science behind marine reserves and how to protect our oceans.


While academics often focus on biodiversity objectives for marine parks, the public and political debate tends to come down to one thing: fishing.

When former federal MP Rob Oakeshott cast one of the deciding votes in support of the Commonwealth marine parks plan in 2013, he explained that he believed they benefit fisheries. The federal government has also emphasised the benefit of marine parks to fisheries production.

There’s also an academic debate. When a study showed that the Great Barrier Reef marine park had harmed fisheries production, there was a passionate response from other experts. This is despite advocates arguing that reserves are primarily about biodiversity conservation, rather than fishing production.

Clearly, fishing is a hot issue for marine parks. So what does the science say?

How do marine parks protect fish?

The proposed benefits to fisheries from marine parks include: protection or insurance against overfishing; “spillover”, where larvae or juveniles from the parks move out and increase the overall production; habitat protection from damaging fishing gear; and managing the ecosystem effects of fishing such as resilience against climate change.

Marine parks regulate activities, mainly fishing, within a specified area. They come in a variety of categories. Some allow fishing, but the most contentious are “no-take” marine parks.

Fishery managers also sometimes close areas of the ocean to fishing. This is different to how no-take marine parks work in two ways: the legislative authority is different (being through fisheries rather than environmental legislation); and the closures usually target a specific fishery, whereas no-take marine parks usually ban all fishing.

Fishery closures, rather than no-take marine parks, are usually applied to protect special areas for particular fish, such as spawning sites or nursery areas. They are also used to protect habitats, such as in the case of trawl closures, which allow the use of other gear such as longlines in the same location.

Fisheries legislation bans damaging fishing gear outright, while benign gears are allowed. In contrast, no-take marine parks tend to exclude all gear types.

Displacing fishers

Neither marine parks nor fishery closures regulate the amount of catch and fishing effort. They only control the location. Commercial fishers take most fish caught in Commonwealth waters and most of this is limited by catch quotas.

When a no-take marine park closes an area to fishing, fishers and their catch are displaced into other areas of the ocean. This occurs for all types of fishing, including recreational fishing. Recreational fishers displaced by marine parks don’t stop fishing, they just fish somewhere else – and the same number of fishers are squeezed into a smaller space.

Marine parks increase the intensity of fishing impacts across the wider coast, which is an uncomfortable outcome for marine park advocates. Modelling of Victorian marine parks showed that displaced catch would harm lobster stocks and associated ecosystems, and was counterproductive to their fishery management objective of rebuilding stock.

Because ecosystems don’t respond in predictable ways, depletion of fish stocks from the fishing displaced from marine parks could lead to severe ecosystem outcomes.

For this reason, a second and separate management change is often needed after marine parks are declared, which is to reduce the number of fishers and fish caught to prevent risk of impacts from the park.

Controlling how many fish are caught (which is what traditional fisheries management does) has substantially more influence on overall fish abundance than controlling where fish are caught with parks, as shown recently on the Great Barrier Reef.

Public cost

Commonwealth fisheries catch quotas are routinely reduced if a fishery harms the sustainability of the marine environment. There’s no compensation to fishers, so there’s no cost to the public, other than a possible reduced supply of fish.

Catches can also be reduced to manage fishing displaced by marine reserves and the outcome is identical except in terms of the public cost. Creation of the Great Barrier Reef Marine Park led to over A$200 million in payments to displaced fishers. Another publicly funded package is planned for the Commonwealth marine reserves.

Marine parks also have high recurring public cost because boundaries need to be policed at sea. Catch quotas can be policed at the wharf, with compliance costs fully recovered from industry.

Do marine parks help fish and fishers?

Evidence of a benefit to fisheries from marine parks is scarce. However, there are some clear examples of fishing displacement that is so minor that there has been an overall increase in fish inside and outside the park.

These examples show that marine parks can sometimes benefit fish stocks, the fishery and also the overall marine ecosystem. However, these examples come from situations where traditional fishery management has not been applied to prevent overfishing.

This is consistent with modelling of marine parks that shows they only increase overall fish populations when there has been severe overfishing. This generally means that if there’s already effective traditional fisheries management, marine reserves cannot benefit fish stocks and fisheries, or restock fish outside the reserve (spillover) (see also here).

In jurisdictions where fisheries management is lacking, any regulation, including through marine reserves, is better than nothing. But this isn’t the situation with Australia’s Commonwealth fisheries where harvest strategies are used and overfishing has been eliminated.

The conclusions from modelling of marine reserves mean that the areas of the reserves that limit fishing would be expected to reduce fishery production and harm our ability to contribute to global food security.

The Coral Sea marine reserve, in particular, represents an area with known large stocks of fish, especially tuna, that could be harvested sustainably. Limiting fishing in the Coral Sea eliminates any potential for these resources to help feed Australians or contribute to global food supplies.

The potential sustainable, ecologically acceptable harvest from the Coral Sea is unknown, so we don’t know the full scale of what’s being lost and how much the recent changes reduce this problem, although Papua New Guinea sustainably harvests 150,000-300,000 tonnes of tuna in its part of the sea.

Allowing fishing doesn’t mean the oceans aren’t protected. Existing fisheries management is already obliged to ensure fishing doesn’t affect sustainability of the marine environment.

The Conversation

Caleb Gardner, Principal Research Fellow, Institute for Marine and Antarctic Studies, University of Tasmania

This article was originally published on The Conversation. Read the original article.

4 Oct 2016

More shark nets for NSW: why haven't we learned from WA's cull?

Leah Gibbs, University of Wollongong

New South Wales Premier Mike Baird has this week announced a plan for a six-month trial of shark nets off the beaches of northern NSW. This would extend the state’s shark net program from the 51 beaches currently netted between Wollongong and Newcastle.

The announcement was triggered by Wednesday’s shark accident, in which a surfer received minor injuries from a shark bite at Sharpes Beach, Ballina.

The decision marks a turn-around in Premier Baird’s position on sharks. For over a year he has acknowledged the importance of addressing the issue, and has adopted a measured, long-term, non-lethal approach to managing shark hazards. Specifically, the NSW government has, in the last year, allocated funding and resources to non-lethal strategies including surveillance, research and education.

Killing sharks has been highly controversial in Australia in recent years, and in NSW shark nets have been a focus of ongoing, highly polarising debate.

Three common misunderstandings about shark nets

The decision to introduce shark nets in the state’s north invites us to revisit some common misunderstandings about this strategy.

First, there is wide misunderstanding about what shark nets are and what they do. The nets used in the NSW Shark Meshing (Bather Protection) Program do not create an enclosed area within which beach goers are protected from sharks.

They are fishing nets, which function by catching and killing sharks in the area. Nets are 150 m long, 6 m deep, and are suspended in water 10-12 m deep, within 500 m of the shore.

Bondi Beach’s shark net in 2009. NSW Department of Primary Industries, 2009

Second, whether shark nets work is still up for debate. Shark nets have been used in NSW since 1937. Since then, the number of netted beaches, methods for deploying nets, and data collection and record-keeping methods have changed, and data sets are incomplete.

Our use of the beach and ocean has also changed dramatically. There are more people in the water, in new areas, and we’re using the ocean for different activities. At the same time, our observation of sharks and emergency response have improved dramatically.

The suggestion that nets prevent shark accidents is an oversimplification of a complex story, a misrepresentation of both technology and data, and it misinforms the public.

And finally, shark nets cannot be a long-term solution. They are out-dated technology based on outdated thinking, developed 80 years ago.

They go directly against our international responsibility to protect threatened species (under the International Union for the Conservation of Nature and our own Environment Protection and Biodiversity Conservation Act), and our national priorities for protecting marine environments and species, including several shark species.

We know that shark nets in NSW kill on average at least 275 animals per year (measured between 1950 and 2008), and that the majority of animals killed pose no threat to people. We can do better than this.

Learning from the (very) recent past

Right now we have an opportunity in NSW to learn from recent experiences in Western Australia. In 2012, the WA government, under Premier Colin Barnett, introduced hooked “drumlines” to kill sharks in an attempt to reduce the risk of shark bites. Like this week’s announcement by Premier Baird, that policy change was stimulated by a spike in shark accidents.

The response to the new policy was a highly-polarised debate and extraordinary public outcry, including two public protests at Perth’s Cottesloe Beach attracting 4,000 and 6,000 people, and protests in eleven other cities around the country, including 2,000 at Sydney’s Manly Beach.

The state’s Environmental Protection Authority received a record number of 12,000 submissions from scientific and other experts presenting reasons to cease the cull. The WA government heeded the EPA’s recommendation and cancelled the policy.

Our research with ocean users conducted during this period showed that perspectives are diverse (we surveyed 557 WA-based ocean-users using quantitative and qualitative research methods).

Among people who use the ocean regularly, some strongly oppose killing sharks; others are ambivalent; and a smaller number of people are in favour. People’s views and understandings are nuanced and carefully thought through.

However, within this group, the strategies for managing shark hazards that were most strongly supported were improving public education about sharks, and encouraging ocean users to understand and accept the risks associated with using the ocean. Other widely supported strategies included developing shark deterrents and increasing surveillance and patrols.

The most strongly opposed approaches were those that killed sharks including culling, proactive catch-and-destroy measures, baited drumlines, and shark nets.

In recent years we have been making good progress in Australia on public discussion and investment in more effective and ethical approaches for reducing shark bites. This week’s move to introduce an outmoded technology to the north coast promises to further divide the community.

We should continue to invest in developing new strategies that better reflect our contemporary understanding of marine ecosystems. Perhaps we also need to consider (temporarily) altering the way we use the ocean, avoiding areas of higher-than-usual shark sightings.

The Conversation

Leah Gibbs, Senior Lecturer in Geography, University of Wollongong

This article was originally published on The Conversation. Read the original article.

15 Oct 2016

New spider crab named 50 years after its discovery

A comparison of large males of P. serpulifera (left) and P. keesingi (right) with representative juveniles found under the abdomens of females. Credit: WA Museum
A comparison of large males of P. serpulifera (left) and P. keesingi (right) with representative juveniles found under the abdomens of females. Credit: WA Museum

A NEW species of spider crab has been named, more than 50 years after the first specimen was lodged at the Western Australian Museum.

 

Several specimens of the long-legged spider crab were collected during recent dredging surveys in WA's northwest, and upon detailed examination, they were found to look quite different to the one existing species of the genus, Paranaxia serpulifera.

After locating and examining 32 similar specimens amongst the WA Museum and Queensland Museum collections, and performing genetic testing, it was clear they belonged to a new species, says WA Museum curator of Crustacea and Worms, Andrew Hosie.

The crab was named Paranaxia keesingi, after CSIRO’s Dr John Keesing, in recognition of his contribution and commitment to the knowledge of WA biodiversity.

 

The earliest collected P. keesingi found in storage was collected in 1963 by Fremantle-based fishermen W. & W. Poole from Shark Bay. Many specimens are in a similar situation—waiting for someone to take notice and characterise them—according to Mr Hosie.

 

“Describing new species and ensuring that they are not an already known species, can be incredibly slow and painstaking work, requiring great patience and attention to detail,” Mr Hosie says.

One of the main reasons for the long time a specimen may remain undescribed is lack of available expertise, as museums generally do not have a scientist dedicated to every single group of animal, he says.

A juvenile male Paranaxia keesingi in full camouflage, collected from the Passage Islands, Pilbara. Image: CSIRO.
A juvenile male Paranaxia keesingi in full camouflage, collected from the Passage Islands, Pilbara. Image: CSIRO.

“We have to rely on experts at other museums for this material to be examined, and we routinely send specimens out for identification,” he says.

“But if the priorities and funding of external experts don’t line up with ours, then it can take a very long time before they are even identified as a new species, let alone described, named and published.” Secondly, Mr Hosie says specimens may not be suitable or there may not be enough information to describe them.

 

“If there is only one or a few specimens, or they are damaged, juvenile, only females, or only males—then naming and describing them may be postponed until there are enough specimens of suitable quality to provide a full description of the species,” he says.

Advancements in science also mean that species can now be distinguished at a genetic level to help tease apart ‘species complexes’ where there is a group of very similar looking species, Mr Hosie says.

“There are now new species described that were once considered regional variants or subspecies, but with the aid of genetic sequencing these are often shown to be distinct species.”

 

 

Paranaxia keesingi can be found as far south as the Houtman Abrolhos Islands and north into Indonesian waters off New Guinea as well as in northern Queensland and is recorded at depths of up to 175 metres.

 

Written by  

 

First published on science network western australia: http://www.sciencewa.net.au/topics/fisheries-a-water/item/4309-new-spider-crab-named-50-years-after-its-discovery

 

11 Sep 2016

 

Rigs to reefs: is it better to leave disused oil platforms where they stand?

Susan Gourvenec, University of Western Australia and Erika Techera, University of Western Australia

The global offshore oil and gas industry has installed a wide variety of infrastructure throughout our oceans, including tens of thousands of wells, thousands of platforms and many thousands of kilometres of seabed pipelines.

Many of these structures have been in service for several decades and are approaching retirement. The North Sea, for example, has more than 550 platforms and undersea production facilities, virtually all of which are set to be decommissioned in the next 30 years.

In Southeast Asia, the issue is even bigger: almost half of the region’s 1,700 offshore installations are more than 20 years old and approaching retirement.

What happens to old offshore oil and gas infrastructure?

After decommissioning and cleaning a platform, seabed structure or pipeline, its operators are faced with a choice: dismantle and remove it completely; leave it in place; or remove some of it while leaving the rest behind.

The choice depends largely on what is technically feasible, as well as what is desirable from an environmental, economic and societal perspective, and of course what is legally allowed.

The earliest relevant international law, the 1958 Geneva Convention on the Continental Shelf, requires the complete removal of disused marine infrastructure. But the United Nations Convention on the Law of the Sea, which has largely superseded it, is more lenient. It states that decisions should take into account “generally accepted international standards established … by the competent international organisation” – in this case the International Maritime Organisation (IMO).

The IMO’s 1989 guidelines allow structures to be left in place on a case-by-case basis. Due consideration must have been given to safety of navigation, rate of deterioration, risk of structural movement, environmental effects, costs, technical feasibility and risks of injury associated with removal.

The guidelines also refer to the possibility of “new use or other reasonable justification” for in situ disposal. This opens up some possibilities for how offshore platforms might take on a new life without being removed.

Is complete removal worthwhile?

Europe has so far tended to favour complete removal of offshore infrastructure, in line with international law. Safely recovering these ageing and vast structures from harsh environments is technically challenging, and the industry has developed some impressive technology such as the Pioneering Spirit, a specialised vessel constructed to lift steel platforms from the North Sea.

Pioneer Spirit
Impressive… but also expensive. kees torn/Wikimedia Commons, CC BY-SA

Complete removal is expensive, both to oil and gas companies and the taxpayer. It also leaves operators facing the problem of what to do with the recovered material. While some parts of the topsides of platforms can be refurbished if structurally sound, most of the material is not reusable. Some elements can be recycled, but much of it will inevitably end up in landfill.

From an environmental perspective, the notion of returning the seabed to its original state is undoubtedly born of the right intentions. But when engineered structures have been part of the marine environment for several decades, might it do more harm than good to remove them?

A new life for platforms

Artificial reefs are often deliberately placed in our oceans to provide habitat for marine life or sites for recreational diving. But many offshore oil and gas structures also fulfil these functions – for instance, by providing breeding sites for fisheries. Removing them might therefore harm these ecosystems.

Despite this, European law only allows artificial reefs to be created from new materials, rather than decommissioned infrastructure.

The United States, which has national laws that allow offshore infrastructure to be left in place, has an established a “rigs to reefs” program administered through the Bureau of Safety and Environmental Enforcement. Under this program, more than 400 decommissioned rigs have been converted to permanent reefs since 1986.

Rigs cannot simply be left to rust in the ocean; projects like this require rigorous assessment before being approved. But the assessment criteria are different and typically less stringent than for the earlier production phase of the rig’s life, largely because there is no longer a risk of spills after decommissioning.

During their initial operating life, marine structures and pipelines must meet strict criteria that limit movement or deformation. This is to ensure that machinery operates correctly and containment systems do not release hydrocarbons into the marine environment. Strict regulations also apply to the removal of hydrocarbons and residues from the system during decommissioning and cleanup.

But once decommissioned, all that is required is that the structure is sufficiently stable on the seabed and will not break apart in ways that would harm the environment or pose a danger to shipping.

Leaving disused infrastructure in the ocean also raises the critical question of who bears ultimate responsibility for it. Should ownership stay with the original operator, or be transferred to the government? This raises issues of liability for any damage that might occur in the future, and who should bear that risk remains a live question for debate and discussion.

Will it have a role after retirement? CSIRO, CC BY-NC-SA

What should Australia do?

Australia’s offshore oil and gas industry is less mature than those in Europe and the United States. As a result, the fate of decommissioned offshore infrastructure is still an emerging issue.

Australia’s current regulations favour complete removal. But the National Offshore Petroleum Safety and Environmental Management Authority is exploring the possibility of supporting an in situ decommissioning policy.

This would involve amending the law to allow certain new uses, as well as to resolve issues of decommissioning standards, safety and risk, liability and ownership. The lack of any established practice gives Australia a unique chance to show innovative leadership on this issue.

Developing an Australian version of the “rigs to reefs” policy would require input from engineers, natural scientists, environmental managers, oil and gas economists, lawyers and others, to work out precisely what is possible and preferable in different locations.

There is little doubt that pressures on the ocean environment will only increase. Growing populations will increase demand on fisheries and probably lead to the development of large offshore aquaculture projects, as well as escalation of shipping and ocean-based transport. Similarly, the demand for energy may drive broad implementation of wave energy and other marine renewables.

With the growing variety of industries set to use the oceans in future, now is the right time to take a wide-ranging look at how best to handle the structures that are already there.

The Conversation

Susan Gourvenec, Professor, Offshore Geomechanics, University of Western Australia and Erika Techera, Professor and Dean of Law, University of Western Australia

This article was originally published on The Conversation. 10 August 2016 Read the original article.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Crown-of-thorns starfish vision revealed for the first time

Scientists are looking for physical vulnerabilities in the coral-eating Crown-of-Thorns Starfish (COTS) in order to mitigate their harmful impacts on coral reefs when in plague numbers. In their pursuit of an Achilles heel, scientists have focussed on the animal’s ability to perceive its environment through its senses. Research has already demonstrated that adult COTS have a well-developed sense of smell, touch and taste. Better understanding these aspects of COTS biology may lead to new methods to either disperse or attract them in order to control their numbers.

 

Recently, research collaborators working with AIMS scientists discovered that adult COTS also have a well-developed sense of sight. At the end of each of their 12 to 15 arms there is an eye which can form rudimentary images of its immediate environment. In effect, a COTS has ‘surround vision’, and can detect large stationary objects against a blue ocean background. Although they are not capable of high resolution image formation, they are capable of seeing where a suitable hideout might be to avoid open areas and minimise exposure to predators. 

A COTS can see areas of contrast in its immediate environment, allowing it to distinguish between open environments and places to shelter over short distances. Images 'c' and 'd' simulate what a COTS perceives of the environments in images 'a' and 'b'. Im
A COTS can see areas of contrast in its immediate environment, allowing it to distinguish between open environments and places to shelter over short distances. Images 'c' and 'd' simulate what a COTS perceives of the environments in images 'a' and 'b'. Im

The study also found that COTS can see slow moving objects, such as the predatory snail, the Pacific triton (Charonia tritonis). Using their sense of sight, COTS are capable of detecting an approaching object, which is to its benefit as it could be it primary predation, the triton snail. If needed, they can coordinate their thousands of tube feet to escape from the approaching object – which might be planning on making a meal of it.

11 Aug 2016

Source Australian Institute of Marine Science (AIMS) 2016

Playing on fears: Exploring the use of the Pacific triton for mitigating crown-of-thorns starfish outbreaks

Controlling repeated outbreaks of the coral-eating Crown-of-Thorns Starfish (COTS), Acanthaster planci, is one of the greatest challenges facing resource managers of the Great Barrier Reef (GBR).

COTS, together with cyclones, are responsible for more than half of all coral cover loss on the GBR. As one of several lines of investigation into COTS population management, our researchers are taking a novel approach to the issue by examining the intriguing potential of a snail, the Pacific triton, a natural enemy of COTS.

 

The Pacific triton (Charonia tritonis, also known as the “giant triton”) is a large marine snail that inhabits coral reefs throughout the Indo-Pacific region. They are rare; historical evidence of harvesting levels is scant, however scientists speculate that overharvesting of the snails for the meat and shell has led to threatened status throughout their range. As such, tritons have been protected on the GBR for decades.

 

Their diet consists primarily of starfish, but will also prey on other echinoderms such as sea cucumbers. Like other predatory marine snails, tritons have a very well developed sense of smell and can hunt their starfish prey by scent alone. Although tritons will prey on several species of starfish, they are particularly fond of COTS. Tritons are one of the few predators of adult COTS as they are seemingly unaffected by their ‘crown-of-thorns’ - hundreds of sharp spines and toxic saponin coating which otherwise acts as a very powerful deterrent against potential predators.

 

However, while tritons prefer the often-abundant COTS, they only eat a few per week. With COTS populations on the GBR estimated to be in the many millions, the combination of this low predation rate and the rarity of triton individuals means that they have limited impact on reducing COTS numbers through predation alone.

Sniffing out smart biological control technologies

 

While we cannot look to this marine snail’s appetite to control outbreaks, scientific findings are emerging that suggest we may be able to harness other triton qualities to influence the starfish populations.  

Dr Mike Hall and his team at AIMS, assisted with funding from the federal government through its ‘Caring for Country’ initiative, are investigating the triton versus COTS, predator-prey relationship to disrupt the life cycle of COTS. One focus of the research is on the use of the scent of a triton to alarm and disperse COTS. This line of thinking is based on the team’s observations that when COTS ‘smell’ the scent of a triton they ‘flee’ (as fast as a starfish can), and stampede in an agitated, fearful manner.

 

“The chemical cues from the triton snail are highly influential when it comes to COTS behavior,” explains Dr Hall. “We only need to introduce water that a triton has been sitting in to disperse a group of the starfish – they don’t even need to see it.”

It is this behavior, sparked by the snail’s chemical cue, that could potentially assist in managing COTS populations on reefs.

 

Deter, divide and conquer

One avenue by which COTS outbreaks could possibly be diminished is by using their scent as a deterrent. This would operate in the same way a mosquito coil is used to keep mosquitos at bay- the scent of the triton on a reef could alarm COTS to such a level that they avoid these areas. Dr Hall has identified two approaches to this method: “Reefs could be seeded with tritons – not to eat them, but to repel them. Alternatively, with time and effort, we could identify, isolate, harness and deploy the chemicals responsible for the COTS behavior, without using the snail itself.”

 

Secondly, tritons may be used to reduce fertilisation success in COTS through their ability to disperse large spawning aggregations.  COTS have an incredible capacity to reproduce. One female can release around 150 million eggs in a single spawning event. “When males and females gather in large aggregations, essentially clumping together almost on top of one another, fertilisation success is incredibly high. If these chemicals can keep the COTS moving around and prevent them from forming these successful breeding aggregations, we could potentially disrupt this outbreak cycle.”

The normally sedentary COTS will aggregate during breeding season, drastically increasing their fertilisation success. Chemical cues from the Pacific triton could disperse these breeding aggregations, reducing fertilisation success.  Image from AIMS
The normally sedentary COTS will aggregate during breeding season, drastically increasing their fertilisation success. Chemical cues from the Pacific triton could disperse these breeding aggregations, reducing fertilisation success. Image from AIMS

The team is working at both ends of this chemosensory relationship. As well as work on identifying and isolating the chemical cues emitted from the triton, they are focusing on chemical sensory pathways in COTS. This COTS aspect is part of a broad international collaboration, developing a COTS reference genome, which, among other valuable information, will help find other COTS vulnerabilities that could be exploited.

 

Sourcing snails

A key challenge to advancing this research is the rarity of triton subjects.  As such, very little is known about their ecology, physiology or reproductive habits, and only a few individuals are available for observation. If triton numbers could be sufficiently bolstered and secured through breeding, this line of research could progress more rapidly and perhaps provide a valuable stock for future reef protection.

 

AIMS is a leader in COTS research

This innovative line of research postulates an exciting new approach for a decades-old problem, and is still in its infancy. Driven by strong external collaborations, AIMS leads the way in not only advancing knowledge of COTS control measures, but is also pioneering research into the causes and drivers of outbreaks, and management and investment strategies.

25 July 2016

Source http://www.aims.gov.au/docs/media/featured-content.html/-/asset_publisher/Ydk18I5jDwF7/content/playing-on-fears-exploring-the-use-of-the-pacific-triton-for-mitigating-crown-of-thorns-starfish-outbreaks

 

To learn more about COTS, please see:

Fact Sheet: Crown-of-thorns starfish

Source Australian Institute of Marine Science (AIMS) 2016

Australian First Shark Spotting Trial to Begin In Byron Bay

In a partnership between Sea Shepherd, Byron Shire Council and the Member for Ballina Tamara Smith MLA, a feasibility study for shark spotting will take place at Wategos Beach after Mayor Simon Richardson successful moved a Mayoral Minute to support it at last weeks Council meeting. 

The trial will be carried out by members of Sea Shepherd and will determine whether the location and spotting abilities at Wategos Beach are suitable for a longer term shark spotting program, paying attention to the impact of morning and afternoon glare, spotting distance from water, changes in visibility in differing weather conditions and levels of water user activity at different times of the day.

 

Funding for the trial is being provided equally by Byron Council and Tamara Smith, MLA. “It’s great to be able to support an initiative that provides extra security and safety for locals and visitors, whilst also ensuring there are no negative impacts on the marine life, including sharks. We were focused on community led, scientifically robust and effective measures to protect our marine environment and ocean goers-and it’s great to be a part of an innovative, intelligent and inspiring solution” Mayor Richardson said.

 

Tamara Smith, MLA for Ballina, the NSW Greens spokesperson for Marine and Fisheries and a member of government's recent Shark Inquiry said: "The Cardno Review recommended shark spotting as the best response to shark encounters and an ideal non-lethal shark mitigation strategy yet the government has not explored it as an option in NSW. I was lucky to hang out with the Shark Spotters from Cape Town a few months ago and I was incredibly impressed and persuaded by their 13 year track record of safety for ocean users in Cape Town. I am also very persuaded that paid, professional shark spotters are intrinsic to the program. I am thrilled to partner with Sea Shepherd and Byron council to fund a feasibility study at Wategos." National Shark Campaign Coordinator for Sea Shepherd Australia, Natalie Banks stated: “The fact that this study was unanimously approved by the Byron Bay Council shows the progressive and forward-thinking manner of the full council, which hasn’t rested on their laurels waiting for a solution from the State Government to be brought forward, but is looking outside the box for real solutions for their community. At a time when northern NSW is looking for solutions to shark mitigation in the region, I am personally proud to be a part of offering the community scientific and proven solutions that could potentially be the way forward for Byron Bay,” 

 

 Background Information

Developed by the Sea Shepherd organisation, the trial responds to the State Government’s independent assessment of current shark mitigation strategies undertaken by Cardno. This assessment identified a Shark Spotting program, currently used in Cape Town, South Africa as the highest ranked solution and the only program to meet eight assessment criteria in that it offers a whole-of-beach solution, does not pose risks to humans or wildlife, would be suitable to NSW beaches, has been tested on white sharks (and a variety of other shark species), that results have been peer reviewed, and costs for the program are low.

The scoping study proposes to provide independent feedback on the abilities and limitations of a more permanent Shark Spotting program at this location.

The study aims to:

  • determine whether the location and spotting abilities are suitable for a longer term shark spotting program, paying attention to the impact of morning and afternoon glare, spotting distance from water users to ensure an early warning service can be provided, changes in visibility in differing weather conditions with particular emphasis on prevailing winds and currents and levels of water user activity at different times of the day
  • advise the number of sharks spotted in comparison to current methods as well as other marine life (e.g. dolphins or school fish) identified during that time
  • identify key issues, constraints and opportunities relating to a more permanent shark spotting trial or program at Wategos Beach, including best vantage point, practicality and extent of Council Authority to implement, key stakeholder attitudes and likelihood of community acceptance
  • develop a report that provides recommendations for a shark spotting solution, with an assessment of limitations and how best to overcome them
  • share information with key stakeholders such as local and state government agencies, scientists and other not-for-profits working on marine wildlife surveys The study will also:
  • identify avenues to advise the local communities of shark bite mitigation identify local groups that would be interested in working alongside a Shark Spotting program
  • identify gaps in current shark mitigation strategies within the local region
  • identify response to alarm (if required) by local beach goers
  • utilise procedures already in place by Shark Spotters in Cape Town and tailor them to local

June 16 2016

 

From: http://www.seashepherd.org.au/

The facts on Great Barrier Reef coral mortality

Despite reported claims and counter claims over the last month about the ‘death’ of large swathes of the Great Barrier Reef, the true impact of this summer’s major coral bleaching event is now emerging.

Preliminary findings from the Great Barrier Reef Marine Park Authority (GBRMPA) and the Australian Institute of Marine Science (AIMS) show approximately three quarters of coral on the Reef has survived to date.

The vast majority of the impact is in the northern third of the Reef, from Port Douglas to Cape York, with the central and southern regions escaping significant mortality.

GBRMPA Chairman Dr Russell Reichelt said the mortality assessment was based on hundreds of comprehensive in-water surveys conducted Reef-wide with the Australian Institute of Marine Science, the Queensland Parks and Wildlife Service and other partners since the beginning of March.

“Collaborative efforts by a large number of institutions and tourism industry volunteers allow us to say with confidence that while bleaching caused by heat stress affected most of the Reef, the most severe mass bleaching and the greatest mortality has been restricted to north of Port Douglas,” Dr Reichelt said.

AIMS Chief Executive John Gunn said there was no doubt this was the most serious bleaching event to hit the Reef on record, and that it was related to a combination of warming of our planet’s oceans and a major El Niño.

“However, it’s important to note the biological impacts of bleaching stress are still playing out across the Reef.

“And while we know many corals in the northern sector will die, others will recover from bleaching over the coming months and we’re hopeful that in areas where bleaching has been minor the Reef will bounce back well.”

 

Based on the results of in-water surveys to date, the average coral loss within each management area is:

50 per cent in the Far Northern Management Area (from the tip of Cape York to just north of Lizard Island)

16 per cent in the Cairns–Cooktown Management Area (Lizard Island to Tully). (Note: Surveys around Lizard Island were conducted in March. More recent reports indicate mortality levels are likely to be higher in this management area.) 3 per cent in the Townsville/Whitsunday Management Area (Tully to Mackay)

0 per cent in the Mackay/Capricorn Management Area (Mackay to Bundaberg). Dr Reichelt said GBRMPA and the Australian Institute of Marine Science have been responsible for monitoring Reef health for over 40 years, and are now working together to develop a comprehensive and authoritative picture of how this year’s bleaching has impacted the ecosystem as a whole.

 

“We’ve opted to release results ahead of final completion of surveys because of widespread misinterpretation of how much of the Reef has died,” he said. “Our aim is to bring the information from all scientific monitoring into a single picture in the coming months. “We’ve seen headlines stating that 93 per cent of the Reef is practically dead. We’ve also seen reports that 35 per cent, or even 50 per cent, of the entire Reef is now gone. “However, based on our combined results so far, the overall mortality is 22 per cent — and about 85 per cent of that die-off has occurred in the far north between the tip of Cape York and just north of Lizard Island, 250 kilometres north of Cairns.

 

“Another round of surveys is scheduled for August to October to assess survivorship, before a final assessment is published.” Dr Reichelt said the bleaching had resulted in varying mortality rates because some reefs had been under greater heat stress than others. “Fortunately, the section of the Marine Park that’s had substantial increase in coral cover in recent years —the southern part of the Reef — has experienced little mortality,” he said. “We know the Great Barrier Reef, which is larger than Italy, is still resilient with the ability to recover from major events, given enough time.

 

“The agency’s strong protective measures, including no-take green zones which make up 33 per cent of the Marine Park, play a critical role in maintaining the resilience of the wider ecosystem. “This underlying resilience was on display recently when the Australian Institute of Marine Science found coral cover increased by 19 per cent across the Marine Park between 2012 and 2015, nearly doubling in the southern sector due to good early recovery from cyclones and floods.”

 

From http://www.aims.gov.au/docs/media/latest-releases/-/asset_publisher/8Kfw/content/the-facts-on-great-barrier-reef-coral-mortality

June 3 2016

 

More information on coral bleaching is available at www.gbrmpa.gov.au and www.aims.gov.au.

Great Barrier Reef Marine Park Authority                                           Australian Institute of Marine Science

(07) 4750 0846 | media@gbrmpa.gov.au                                           (07) 4753 4264 | media@aims.gov.au

Local leads most successful Seagrass restoration in the world

A 1997 seagrass restoration trial, four years later in October 2001
A 1997 seagrass restoration trial, four years later in October 2001. From science network Western Australia.

June 20 2016

WHEN Geoff Bastyan noticed Seagrass disappearing from harbours in Albany nearly 50 years ago, he would never have predicted his observation would lead to the most successful Seagrass restoration in the world.

Mr Bastyan noticed a decline in the distribution and health of Posidonia australis and P. sinuosa seagrass, commonly known as ribbon weed, in Oyster and Princess Royal harbours in the late 1970s. Seagrass is vital to healthy marine ecosystems – it provides food and habitat, improves water clarity and reduces coastal erosion by stabilising sediments, filters nutrients, oxygenates water and absorbs carbon dioxide. Mr Bastyan was determined to document its disappearance, so he started self-funded monitoring programs of both harbours in 1981.

 

Back then, GPS technology was still being developed, so he spent countless hours scuba diving both harbours to record changes in Seagrass species and density at different depths by hand, and also used aerial photography.

By 1988, Mr Bastyan’s monitoring showed substantial seagrass losses of 80 per cent from Oyster Harbour and 90 per cent from Princess Royal Harbour. Oyster Harbour was overloaded with agricultural nutrients from surrounding farmland, while Princess Royal Harbour had high levels of industrial waste and sewage.

Mr Bastyan’s research prompted the Albany Harbours Environmental Study, a report to the Environmental Protection Authority, in 1988 and 1989.

 

The study found if agricultural and industrial pollutant loads continued, most of the remaining seagrass would be lost from Princess Royal Harbour within five years and Oyster Harbour within 10 years. Mr Bastyan began seagrass transplant trials in 1994, in spite of the prevailing view that degraded seagrass meadows could not be rehabilitated. His efforts to painstakingly relocate hundreds of plants across 2.6 hectares throughout the 1990s disproved this theory, with a 97 per cent survival rate making his work the most successful seagrass restoration project in the world.

Mr Bastyan has received international recognition as a Seagrass restoration pioneer and accolades for his contribution to the understanding of Seagrass ecology. Last month, he was awarded the Great Southern Development Commission medal, which celebrates natural resource management best practice and includes a $12,000 grant. The humble 58-year-old says he felt honoured and doesn’t expect awards for doing what he loves. “It’s very humbling,” he says. “We do what we do for the love of the environment. “It’s stimulating to try and understand the natural processes in the ocean – it’s a great office.” Mr Bastyan plans to use the grant to finish documenting the Seagrass’ natural regrowth and restorative effects on the harbours.

 

 

First publish on Science networkWA

Marine Science News

Sea Shepherd calls for Shark Net Removal in Queensland

Tiny plastics are potentially dangerous for turtles too

4 things you didn’t know about white sharks

The deepest-dwelling fish in the sea is small, pink and delicate

Why do shark bites seem to be more deadly in Australia than elsewhere?

Understanding the feeding role of tiger sharks

Marine Science facts

  • Half the Oxygen we breath is produced in the Ocean

 

  •  Irukandji jelly fish, with just a brush of venom leaves almost no mark. But after about a half hour you develop Irukandji syndrome, a debilitating mix of nausea, vomiting, severe pain, difficulty breathing, drenching sweating and sense of impending doom. You get so sick that your biggest worry is that you’re not going to die

 

  • The most remote point in the oceans is called Point Nemo

 

  • The Pacific, Atlantic, and Indian oceans are known as the three major oceans.